首页 > 后端开发 > Python教程 > 大 O 表示法 - Python

大 O 表示法 - Python

Barbara Streisand
发布: 2024-11-18 08:43:01
原创
821 人浏览过

1. 定义

描述算法执行时间或空间使用上限的数学符号。它表示为 O(f(n)),其中 f(n) 是一个函数,将时间或空间表示为输入 n 大小的函数.

Notación Big O - Python
更多信息请访问:http://bigocheatsheet.com

2. 目的

  • 算法比较:允许您比较不同的算法并针对给定问题选择最有效的算法。
  • 可扩展性:帮助预测当数据量增加时算法的行为方式。

3. 复杂度分析

  • 最坏情况:指算法耗时更长或使用更多资源的场景。大O通常指的是这种情况。
  • 最佳情况和平均情况:虽然很重要,但它们在大 O 表示法中使用频率较低。

4.空间与空间时间

  • 时间复杂度:指算法执行所需的时间。
  • 空间复杂度:指的是它使用的额外内存量。它可以具有诸如 O(1)(恒定空间)或 O(n)(线性空间)之类的符号。

示例:

import timeit
import matplotlib.pyplot as plt
import cProfile

# O(1)


def constant_time_operation():
    return 42

# O(log n)


def logarithmic_time_operation(n):
    count = 0
    while n > 1:
        n //= 2
        count += 1
    return count

# O(n)


def linear_time_operation(n):
    total = 0
    for i in range(n):
        total += i
    return total

# O(n log n)


def linear_logarithmic_time_operation(n):
    if n <= 1:
        return n
    else:
        return linear_logarithmic_time_operation(n - 1) + n

# O(n^2)


def quadratic_time_operation(n):
    total = 0
    for i in range(n):
        for j in range(n):
            total += i + j
    return total

# O(2^n)


def exponential_time_operation(n):
    if n <= 1:
        return 1
    else:
        return exponential_time_operation(n - 1) + exponential_time_operation(n - 1)

# O(n!)


def factorial_time_operation(n):
    if n == 0:
        return 1
    else:
        return n * factorial_time_operation(n - 1)

# Function to measure execution time using timeit

def measure_time(func, *args):
    execution_time = timeit.timeit(lambda: func(*args), number=1000)
    return execution_time


def plot_results(results):
    functions, times = zip(*results)

    colors = ['skyblue', 'orange', 'green', 'red', 'purple', 'brown', 'pink']
    plt.figure(figsize=(14, 8))
    plt.bar(functions, times, color=colors)

    for i, v in enumerate(times):
        plt.text(i, v + 0.5, f"{v:.6f}", ha='center',
                 va='bottom', rotation=0, color='black')

    plt.xlabel('Function Complexity')
    plt.ylabel('Average Time (s)')
    plt.title('Execution Time of Different Algorithm Complexities')
    plt.grid(axis='y', linestyle='--', linewidth=0.5, color='gray', alpha=0.5)

    plt.tight_layout()
    plt.show()


def main():
    results = []
    results.append(("O(1)", measure_time(constant_time_operation)))
    results.append(("O(log n)", measure_time(logarithmic_time_operation, 10)))
    results.append(("O(n)", measure_time(linear_time_operation, 10)))
    results.append(("O(n log n)", measure_time(
        linear_logarithmic_time_operation, 10)))
    results.append(("O(n^2)", measure_time(quadratic_time_operation, 7)))
    results.append(("O(2^n)", measure_time(exponential_time_operation, 7)))
    results.append(("O(n!)", measure_time(factorial_time_operation, 112)))

    plot_results(results)


if __name__ == '__main__':
    cProfile.run("main()", sort="totime", filename="output_profile.prof")

登录后复制

Notación Big O - Python

请记住,仅仅应用大符号是不够的,或者,尽管这是第一步,还有其他方法来优化内存,例如使用插槽、缓存、线程、并行性、流程等

感谢您的阅读!!
通过反应并提出您的意见来支持我。

以上是大 O 表示法 - Python的详细内容。更多信息请关注PHP中文网其他相关文章!

来源:dev.to
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
作者最新文章
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板