Rust 线程安全性:与 C 的比较。
在这个POC(概念证明)中,我们将探索Rust语言如何处理竞争条件,并将其与C ,一种广泛使用的语言,但竞争的安全保障较少。
Rust 线程安全性:与 C 的比较线程安全:从 C 到 Rust 的数据竞争
指数-
一、简介
- 2. 线程
- 3. C 语言的实现
-
-
3.1.没有针对竞争条件的保护的代码
- 3.2.使用互斥体修复
4. Rust 中的实现
-
-
4.1.竞争条件问题
- 4.2.互斥体和弧的解析
- 4.3.互斥体对比读写锁
5. 结论
- 6. 参考文献
一、简介
在计算中,
线程用于将软件任务划分为可以并发执行的子任务。通过使用线程,我们获得了处理时间并更好地利用机器的资源,但这种竞争带来了挑战,例如竞争条件,这可能会产生数据的严重不一致。
2. 线程
线程是允许您同时处理任务的执行单元。我们可以将线程视为程序内独立的执行流,如下图所示:
此外,线程还可以用来实现并行性,即多个任务在不同的CPU核心上同时执行。这使得程序能够更好地利用可用的硬件,加快独立任务的执行速度。
3. C 语言的实现
让我们在
C 中创建一个简单的系统:
- 初始余额为 1000。
- 一组可以是贷方或借方的交易。
- 使用线程并行处理这些事务。
int saldo = 1000; void creditar(int valor) { int tmp_saldo = saldo; sleep(1); // Delay simulado saldo += tmp_saldo + valor; } void debitar(int valor) { int temp = saldo; sleep(1); // Delay simulado if (temp >= valor) { saldo = temp - valor; } } void* processar_transacao(void* arg) { int valor = *(int*)arg; if (valor > 0) { creditar(valor); } else { debitar(abs(valor)); } return NULL; } int main() { int transactions[] = {100, -50, 200, -150, 300, -200, 150, -100, 50, -50}; int num_transactions = sizeof(transactions) / sizeof(transactions[0]); pthread_t threads[num_transactions]; for (int i = 0; i < num_transactions; i++) { pthread_create(&threads[i], NULL, processar_transacao, &transactions[i]); // Cria uma thread para cada transação } for (int i = 0; i < num_transactions; i++) { pthread_join(threads[i], NULL); // Aguarda todas as threads terminarem } printf("Saldo final da conta: %d\n", saldo); return 0; }
多线程处理的环境时,我们所说的竞争条件可能会发生,当两个线程访问并修改相同的值时,我们就会出现竞争条件。出现此问题的原因是,由于调用之间的竞争,无法保证每个线程中访问的值的同步。
多次执行此代码时,最终余额会有所不同,因为线程同时访问和更改余额。
3.2.使用互斥体修复
int saldo = 1000; void creditar(int valor) { int tmp_saldo = saldo; sleep(1); // Delay simulado saldo += tmp_saldo + valor; } void debitar(int valor) { int temp = saldo; sleep(1); // Delay simulado if (temp >= valor) { saldo = temp - valor; } } void* processar_transacao(void* arg) { int valor = *(int*)arg; if (valor > 0) { creditar(valor); } else { debitar(abs(valor)); } return NULL; } int main() { int transactions[] = {100, -50, 200, -150, 300, -200, 150, -100, 50, -50}; int num_transactions = sizeof(transactions) / sizeof(transactions[0]); pthread_t threads[num_transactions]; for (int i = 0; i < num_transactions; i++) { pthread_create(&threads[i], NULL, processar_transacao, &transactions[i]); // Cria uma thread para cada transação } for (int i = 0; i < num_transactions; i++) { pthread_join(threads[i], NULL); // Aguarda todas as threads terminarem } printf("Saldo final da conta: %d\n", saldo); return 0; }
互斥体是一种同步原语,可确保一次只有一个线程可以访问共享资源。缩写词互斥体来自英文术语互斥,意思是“互斥”。
当一个线程获取互斥体时,任何其他尝试获取相同互斥体的线程都会被挂起,直到第一个线程释放互斥体。这可以防止两个或多个进程(线程)同时访问共享资源。
4. Rust 中的实现
int saldo = 1000; pthread_mutex_t saldo_mutex; // Mutex para proteger o saldo void creditar(int valor) { pthread_mutex_lock(&saldo_mutex); // Bloqueia o mutex int tmp_saldo = saldo; sleep(1); // Delay simulado saldo = tmp_saldo + valor; pthread_mutex_unlock(&saldo_mutex); // Libera o mutex } void debitar(int valor) { pthread_mutex_lock(&saldo_mutex); // Bloqueia o mutex int tmp_saldo = saldo; sleep(1); // Delay simulado if (tmp_saldo >= valor) { saldo = tmp_saldo - valor; } pthread_mutex_unlock(&saldo_mutex); // Libera o mutex }
将 Rust 视为一种不存在于数据竞赛中的语言并不高效,但我们可以理解 结构 及其编译器如何通过为内存和线程安全带来出色的功能来做出贡献。
Rust 使用 所有权、借用 和并发安全结构等功能,通过编译时保证来对待竞争条件:
- Arc:安全共享不可变数据。
- Mutex 和 RwLock:可变数据的访问控制。
4.1.竞争条件问题
不使用 Arc 和 Mutex 结构
Rust’s rich type system and ownership model guarantee memory-safety and thread-safety — enabling you to eliminate many classes of bugs at compile-time.
Rust 不允许在没有保护的情况下从多个线程直接访问可变数据(余额)。
编译器将生成错误,因为余额在没有安全机制的情况下被移动到多个线程(handle1 和 handle2)。
将显示的错误消息是:
fn main() { let mut saldo = 1000; // saldo mutável, mas sem proteção let handle1 = thread::spawn(move || { saldo += 100; // erro: `saldo` é movido para esta thread sem proteção }); let handle2 = thread::spawn(move || { saldo -= 50; // erro: `saldo` é movido para esta thread sem proteção }); handle1.join().unwrap(); handle2.join().unwrap(); }
4.2.互斥体和弧的解析
使用 Mutex 和 Arc,我们能够编译并执行我们的代码,并解决了竞争条件问题。
error[E0382]: use of moved value: `saldo`
4.3.互斥体对比读写锁
Mutex 和 RwLock 用于处理竞争条件,各自具有特定的优点:
互斥体:保证一个线程对资源的独占访问,阻止对其他线程的访问,直到该线程被释放。它简单而有效,但即使是读取也会阻塞资源,从而在读取密集的场景中效率较低。
RwLock:使用 .read() 允许多个同时读取,并使用 .write() 限制独占写入。它非常适合以读取为主的场景,因为它通过允许读取操作中的并行性来提高性能。
5. 结论
C 和 Rust 之间的比较突出了解决竞争条件的不同方法。 C 需要注意避免竞争条件错误,而 Rust 除了所有权模型之外还通过 Mutex、RwLock 和 Arc 等工具在编译时降低了这些风险。这不仅使代码更加安全,还通过避免无声错误减少了程序员的心理负担。
总之,Rust 将自己定位为开发竞争系统的绝佳选择,提供安全性和可靠性。
6. 参考文献
- 带有代码的仓库:https://github.com/z4nder/rust-data-races
- https://en.wikipedia.org/wiki/Race_condition
- https://blog.bughunt.com.br/o-que-sao-vulnerabilidades-race-condition/
- https://medium.com/cwi-software/spring-boot-race-condition-e-ambiente-multi-thread-263b21e0042e
- https://learn.microsoft.com/en-us/troubleshoot/developer/visualstudio/visual-basic/language-compilers/race-conditions-deadlocks
- https://www.reddit.com/r/rust/comments/18faxjg/understanding_threadsafety_vs_race_conditions/?rdt=52263
- https://doc.rust-lang.org/nomicon/races.html
- https://news.ycombinator.com/item?id=23599598
以上是Rust 线程安全性:与 C 的比较。的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

C语言数据结构:树和图的数据表示与操作树是一个层次结构的数据结构由节点组成,每个节点包含一个数据元素和指向其子节点的指针二叉树是一种特殊类型的树,其中每个节点最多有两个子节点数据表示structTreeNode{intdata;structTreeNode*left;structTreeNode*right;};操作创建树遍历树(先序、中序、后序)搜索树插入节点删除节点图是一个集合的数据结构,其中的元素是顶点,它们通过边连接在一起边可以是带权或无权的数据表示邻

文件操作难题的真相:文件打开失败:权限不足、路径错误、文件被占用。数据写入失败:缓冲区已满、文件不可写、磁盘空间不足。其他常见问题:文件遍历缓慢、文本文件编码不正确、二进制文件读取错误。

C语言函数是代码模块化和程序搭建的基础。它们由声明(函数头)和定义(函数体)组成。C语言默认使用值传递参数,但也可使用地址传递修改外部变量。函数可以有返回值或无返回值,返回值类型必须与声明一致。函数命名应清晰易懂,使用驼峰或下划线命名法。遵循单一职责原则,保持函数简洁性,以提高可维护性和可读性。

C语言函数名定义包括:返回值类型、函数名、参数列表和函数体。函数名应清晰、简洁、统一风格,避免与关键字冲突。函数名具有作用域,可在声明后使用。函数指针允许将函数作为参数传递或赋值。常见错误包括命名冲突、参数类型不匹配和未声明的函数。性能优化重点在函数设计和实现上,而清晰、易读的代码至关重要。

C语言函数是可重复利用的代码块,它接收输入,执行操作,返回结果,可将代码模块化提高可复用性,降低复杂度。函数内部机制包含参数传递、函数执行、返回值,整个过程涉及优化如函数内联。编写好的函数遵循单一职责原则、参数数量少、命名规范、错误处理。指针与函数结合能实现更强大的功能,如修改外部变量值。函数指针将函数作为参数传递或存储地址,用于实现动态调用函数。理解函数特性和技巧是编写高效、可维护、易理解的C语言程序的关键。

C35 的计算本质上是组合数学,代表从 5 个元素中选择 3 个的组合数,其计算公式为 C53 = 5! / (3! * 2!),可通过循环避免直接计算阶乘以提高效率和避免溢出。另外,理解组合的本质和掌握高效的计算方法对于解决概率统计、密码学、算法设计等领域的许多问题至关重要。

算法是解决问题的指令集,其执行速度和内存占用各不相同。编程中,许多算法都基于数据搜索和排序。本文将介绍几种数据检索和排序算法。线性搜索假设有一个数组[20,500,10,5,100,1,50],需要查找数字50。线性搜索算法会逐个检查数组中的每个元素,直到找到目标值或遍历完整个数组。算法流程图如下:线性搜索的伪代码如下:检查每个元素:如果找到目标值:返回true返回falseC语言实现:#include#includeintmain(void){i

C#和C 的历史与演变各有特色,未来前景也不同。1.C 由BjarneStroustrup在1983年发明,旨在将面向对象编程引入C语言,其演变历程包括多次标准化,如C 11引入auto关键字和lambda表达式,C 20引入概念和协程,未来将专注于性能和系统级编程。2.C#由微软在2000年发布,结合C 和Java的优点,其演变注重简洁性和生产力,如C#2.0引入泛型,C#5.0引入异步编程,未来将专注于开发者的生产力和云计算。
