使用 matplotlib 以条形图的形式绘制数据时,通常需要区分不同的数据组。数据结构可能类似于以下内容:
data = {'Room A': {'Shelf 1': {'Milk': 10, 'Water': 20}, 'Shelf 2': {'Sugar': 5, 'Honey': 6} }, 'Room B': {'Shelf 1': {'Wheat': 4, 'Corn': 7}, 'Shelf 2': {'Chicken': 2, 'Cow': 1} } }
所需的输出(表示为图像)为:
[显示带标签的条形图的图像]
由于 matplotlib 中没有用于添加组标签的内置解决方案,因此可以设计自定义实现:
#!/usr/bin/env python from matplotlib import pyplot as plt def mk_groups(data): try: newdata = data.items() except: return thisgroup = [] groups = [] for key, value in newdata: newgroups = mk_groups(value) if newgroups is None: thisgroup.append((key, value)) else: thisgroup.append((key, len(newgroups[-1]))) if groups: groups = [g + n for n, g in zip(newgroups, groups)] else: groups = newgroups return [thisgroup] + groups def add_line(ax, xpos, ypos): line = plt.Line2D([xpos, xpos], [ypos + .1, ypos], transform=ax.transAxes, color='black') line.set_clip_on(False) ax.add_line(line) def label_group_bar(ax, data): groups = mk_groups(data) xy = groups.pop() x, y = zip(*xy) ly = len(y) xticks = range(1, ly + 1) ax.bar(xticks, y, align='center') ax.set_xticks(xticks) ax.set_xticklabels(x) ax.set_xlim(.5, ly + .5) ax.yaxis.grid(True) scale = 1. / ly for pos in xrange(ly + 1): # change xrange to range for python3 add_line(ax, pos * scale, -.1) ypos = -.2 while groups: group = groups.pop() pos = 0 for label, rpos in group: lxpos = (pos + .5 * rpos) * scale ax.text(lxpos, ypos, label, ha='center', transform=ax.transAxes) add_line(ax, pos * scale, ypos) pos += rpos add_line(ax, pos * scale, ypos) ypos -= .1 if __name__ == '__main__': data = {'Room A': {'Shelf 1': {'Milk': 10, 'Water': 20}, 'Shelf 2': {'Sugar': 5, 'Honey': 6} }, 'Room B': {'Shelf 1': {'Wheat': 4, 'Corn': 7}, 'Shelf 2': {'Chicken': 2, 'Cow': 1} } } fig = plt.figure() ax = fig.add_subplot(1,1,1) label_group_bar(ax, data) fig.subplots_adjust(bottom=0.3) fig.savefig('label_group_bar_example.png')
mk_groups 函数将数据转换为合适的格式创建图表。 add_line 负责在子图的指定位置添加垂直线。 label_group_bar 函数生成下面带有组标签的条形图。
此实现的结果是带有明确标记的组的条形图:
[显示带有标记的组的条形图的图像]
以上是如何向 Matplotlib 条形图添加组标签?的详细内容。更多信息请关注PHP中文网其他相关文章!