如何在 C 中有效地检查正在运行的 std::thread 的状态?
检查正在运行的 std::thread 的状态
在 C 中,std::thread 是一种用于实现并发的类。确定 std::thread 是否仍在运行可能具有挑战性,特别是在平台独立性至关重要的情况下。
最初,std::thread 缺少 timed_join() 方法,而 joinable() 并不适用于这个目的。提出了另一种解决方案,即利用 std::lock_guard 锁定线程内的互斥体,然后使用 try_lock() 方法评估它是否仍处于锁定状态,指示线程的运行状态。然而,这种策略被认为过于复杂。
检查线程状态的优雅解决方案
要获得更简洁的方法,请考虑利用 std::async 和 std::future。 std::async 在单独的线程上启用异步任务,而 std::future 允许检索操作的结果。 std::future 的 wait_for 函数可以与零毫秒超时一起使用,以有效地检查线程是否仍在运行:
#include <future> #include <thread> #include <chrono> #include <iostream> int main() { // Create an asynchronous task on a new thread using std::async. auto future = std::async(std::launch::async, [] { std::this_thread::sleep_for(3s); return 8; }); // Check thread status using wait_for() with zero milliseconds. auto status = future.wait_for(0ms); // Print status according to the wait_for() result. if (status == std::future_status::ready) { std::cout << "Thread finished" << std::endl; } else { std::cout << "Thread still running" << std::endl; } auto result = future.get(); // Retrieve result. }
或者,可以使用 std::promise 从中获取 future 对象a std::thread:
#include <future> #include <thread> #include <chrono> #include <iostream> int main() { // Create a promise and its associated future. std::promise<bool> p; auto future = p.get_future(); // Run a task on a new thread using std::thread. std::thread t([&p] { std::this_thread::sleep_for(3s); p.set_value(true); // Set the promise value atomically. }); // Check thread status using wait_for() as previous example. auto status = future.wait_for(0ms); // Print status according to the wait_for() result. if (status == std::future_status::ready) { std::cout << "Thread finished" << std::endl; } else { std::cout << "Thread still running" << std::endl; } t.join(); // Join the thread. }
两个示例最初都会显示“线程仍在运行”,因为在线程完成之前检查了状态。然而,一个更简单的解决方案是使用原子布尔标志:
#include <thread> #include <atomic> #include <chrono> #include <iostream> int main() { // Use an atomic boolean flag for thread status tracking. std::atomic<bool> done(false); // Run a task on a new thread that sets `done` to true when finished. std::thread t([&done] { std::this_thread::sleep_for(3s); done = true; }); // Check thread status using atomic flag. if (done) { std::cout << "Thread finished" << std::endl; } else { std::cout << "Thread still running" << std::endl; } t.join(); // Join the thread. }
以上是如何在 C 中有效地检查正在运行的 std::thread 的状态?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

C#和C 的历史与演变各有特色,未来前景也不同。1.C 由BjarneStroustrup在1983年发明,旨在将面向对象编程引入C语言,其演变历程包括多次标准化,如C 11引入auto关键字和lambda表达式,C 20引入概念和协程,未来将专注于性能和系统级编程。2.C#由微软在2000年发布,结合C 和Java的优点,其演变注重简洁性和生产力,如C#2.0引入泛型,C#5.0引入异步编程,未来将专注于开发者的生产力和云计算。

C#和C 的学习曲线和开发者体验有显着差异。 1)C#的学习曲线较平缓,适合快速开发和企业级应用。 2)C 的学习曲线较陡峭,适用于高性能和低级控制的场景。

静态分析在C 中的应用主要包括发现内存管理问题、检查代码逻辑错误和提高代码安全性。1)静态分析可以识别内存泄漏、双重释放和未初始化指针等问题。2)它能检测未使用变量、死代码和逻辑矛盾。3)静态分析工具如Coverity能发现缓冲区溢出、整数溢出和不安全API调用,提升代码安全性。

C 通过第三方库(如TinyXML、Pugixml、Xerces-C )与XML交互。1)使用库解析XML文件,将其转换为C 可处理的数据结构。2)生成XML时,将C 数据结构转换为XML格式。3)在实际应用中,XML常用于配置文件和数据交换,提升开发效率。

使用C 中的chrono库可以让你更加精确地控制时间和时间间隔,让我们来探讨一下这个库的魅力所在吧。C 的chrono库是标准库的一部分,它提供了一种现代化的方式来处理时间和时间间隔。对于那些曾经饱受time.h和ctime折磨的程序员来说,chrono无疑是一个福音。它不仅提高了代码的可读性和可维护性,还提供了更高的精度和灵活性。让我们从基础开始,chrono库主要包括以下几个关键组件:std::chrono::system_clock:表示系统时钟,用于获取当前时间。std::chron

C 的未来将专注于并行计算、安全性、模块化和AI/机器学习领域:1)并行计算将通过协程等特性得到增强;2)安全性将通过更严格的类型检查和内存管理机制提升;3)模块化将简化代码组织和编译;4)AI和机器学习将促使C 适应新需求,如数值计算和GPU编程支持。

1)c relevantduetoItsAverity and效率和效果临界。2)theLanguageIsconTinuellyUped,withc 20introducingFeaturesFeaturesLikeTuresLikeSlikeModeLeslikeMeSandIntIneStoImproutiMimproutimprouteverusabilityandperformance.3)

C#使用自动垃圾回收机制,而C 采用手动内存管理。1.C#的垃圾回收器自动管理内存,减少内存泄漏风险,但可能导致性能下降。2.C 提供灵活的内存控制,适合需要精细管理的应用,但需谨慎处理以避免内存泄漏。
