首页 > 后端开发 > Python教程 > 计算机视觉数据集 (2)

计算机视觉数据集 (2)

DDD
发布: 2024-11-24 13:55:14
原创
384 人浏览过

请我喝杯咖啡☕

*我的帖子解释了 MNIST、EMNIST、QMNIST、ETLCDB、Kuzushiji 和 Moving MNIST。

(1) 时尚-MNIST(2017):

  • 有 70,000 张时尚图像,每个图像都连接到 10 个类别的标签: *备注:
    • 火车 60,000,测试 10,000。
    • 每个图像都是 28x28 像素。
  • 是 PyTorch 中的 FashionMNIST()。

Datasets for Computer Vision (2)

(2) 加州理工学院 101(2003):

  • 有 8,677 个对象图像,每个图像都连接到来自 101 个类别(类)的标签。 *每张图像大约为 300x200 像素。
  • 是 PyTorch 中的 Caltech101()。

Datasets for Computer Vision (2)

(3) 加州理工学院 256(2007):

  • 有 30,607 个对象图像连接到来自 257 个类别(类)的标签。 *实际上,它有 257 个类别(类别),名称为 Caltech 256
  • 是 PyTorch 中的 Caltech256()。

Datasets for Computer Vision (2)

Datasets for Computer Vision (2)

(4) CelebA(大规模 CelebFaces 属性)(2015):

  • 有 202,599 张名人脸部图像,每个图像都与 40 个属性相关: *备注:
    • 162,770 用于训练,19,867 用于验证,19,962 用于测试。
    • 建议直接从Google Drive下载,因为从Google Drive使用Google Drive API下载太拥挤。
  • 是 PyTorch 中的 CelebA()。

Datasets for Computer Vision (2)

(5) CIFAR-10(加拿大高级研究所-10)(2009):

  • 有 60,000 张车辆和动物图像,每个图像都连接到 10 个类别的标签: *备注:
    • 火车 50,000,测试 10,000。
    • 每张图像为 32x32 像素。
  • 是 PyTorch 中的 CIFAR10()。

Datasets for Computer Vision (2)

(6) CIFAR-100(加拿大高级研究所-100)(2009):

  • 有 60,000 个对象图像,每个图像都连接到来自 100 个类的标签: *备注:
    • 火车 50,000,测试 10,000。
    • 每张图像为 32x32 像素。
  • 是 PyTorch 中的 CIFAR100()。

Datasets for Computer Vision (2)

以上是计算机视觉数据集 (2)的详细内容。更多信息请关注PHP中文网其他相关文章!

来源:dev.to
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板