本文将引导您设计和实现企业级 AI Agent 工具管理平台。无论您是构建 AI Agent 系统还是对工具管理平台感兴趣,您都可以在这里找到实用的设计模式和技术解决方案。
想象一下您的 AI Agent 系统需要处理数十甚至数百种不同的工具:
这就是工具管理平台的用武之地。
将工具注册中心视为一个图书馆索引系统 - 它管理所有工具的“身份信息”。
# Tool registration example class ToolRegistry: def register_tool(self, tool_info: dict): """ Register a new tool tool_info = { "name": "Text Translation Tool", "id": "translate_v1", "description": "Supports multi-language text translation", "version": "1.0.0", "api_schema": {...} } """ # Validate required information self._validate_tool_info(tool_info) # Store in database self.db.save_tool(tool_info)
-- Core table structure CREATE TABLE tools ( id VARCHAR(50) PRIMARY KEY, name VARCHAR(100) NOT NULL, description TEXT, version VARCHAR(20), api_schema JSON, created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP );
想想手机上的应用程序等工具 - 我们需要能够随时安装、更新和卸载它们。
class ToolLoader: def __init__(self): self._loaded_tools = {} def load_tool(self, tool_id: str): """Dynamically load a tool""" if tool_id in self._loaded_tools: return self._loaded_tools[tool_id] tool_info = self.registry.get_tool(tool_id) tool = self._create_tool_instance(tool_info) self._loaded_tools[tool_id] = tool return tool
就像为员工分配不同的门禁卡一样,我们需要控制谁可以使用哪些工具。
class ToolAccessControl: def check_permission(self, user_id: str, tool_id: str) -> bool: """Check if user has permission to use a tool""" user_role = self.get_user_role(user_id) tool_permissions = self.get_tool_permissions(tool_id) return user_role in tool_permissions
就像跟踪包裹递送一样,我们需要了解每个工具调用的整个过程。
class ToolTracer: def trace_call(self, tool_id: str, params: dict): span = self.tracer.start_span( name=f"tool_call_{tool_id}", attributes={ "tool_id": tool_id, "params": json.dumps(params), "timestamp": time.time() } ) return span
系统需要一个“健康检查”机制来及时发现并处理问题。
class ToolMonitor: def collect_metrics(self, tool_id: str): """Collect tool usage metrics""" metrics = { "qps": self._calculate_qps(tool_id), "latency": self._get_avg_latency(tool_id), "error_rate": self._get_error_rate(tool_id) } return metrics def check_alerts(self, metrics: dict): """Check if alerts need to be triggered""" if metrics["error_rate"] > 0.1: # Error rate > 10% self.send_alert("High Error Rate Alert")
我们来看一个具体的使用场景:
# Initialize platform platform = ToolPlatform() # Register new tool platform.registry.register_tool({ "id": "weather_v1", "name": "Weather Query Tool", "description": "Get weather information for major cities worldwide", "version": "1.0.0", "api_schema": { "input": { "city": "string", "country": "string" }, "output": { "temperature": "float", "weather": "string" } } }) # Use tool async def use_weather_tool(city: str): # Permission check if not platform.access_control.check_permission(user_id, "weather_v1"): raise PermissionError("No permission to use this tool") # Load tool tool = platform.loader.load_tool("weather_v1") # Call tracing with platform.tracer.trace_call("weather_v1", {"city": city}): result = await tool.query_weather(city) # Collect metrics platform.monitor.collect_metrics("weather_v1") return result
模块化设计
性能优化
容错
安全措施
一个优秀的工具管理平台应该是:
通过本文介绍的设计模式,您可以构建一个全面的工具管理平台,为 AI Agent 系统提供强大的工具调用支持。
以上是构建代理工具管理平台:实用架构指南的详细内容。更多信息请关注PHP中文网其他相关文章!