如何使用 Pandas 高效地从大型 Excel 文件加载特定工作表?
使用 Pandas 高效地从工作簿加载特定工作表
Pandas 的 pd.read_excel() 函数是读取 Excel 工作簿的强大工具。但是,在处理包含多个工作表的大文件时,加载整个工作簿可能效率低下,尤其是当您只需要几个特定工作表中的数据时。
使用 pd.read_excel( 了解加载过程) )
在特定工作表上使用 pd.read_excel() 时,似乎整个工作簿都已加载到内存中。这是因为 pandas 内部使用 ExcelFile 对象来表示工作簿。 ExcelFile 对象在初始化期间解析整个文件,无论指定哪个工作表。
高效加载特定工作表
要优化加载过程,请考虑使用 pd直接.ExcelFile对象。通过使用工作簿路径实例化 ExcelFile 对象,您可以访问特定工作表,而无需重新加载整个文件。
例如:
xls = pd.ExcelFile('path_to_file.xls') df1 = pd.read_excel(xls, 'Sheet1') df2 = pd.read_excel(xls, 'Sheet2')
此方法在创建过程中仅加载整个工作簿一次ExcelFile 对象的。后续调用 pd.read_excel() 将从指定工作表中检索数据,而不会产生重新加载文件的开销。
加载多个工作表
此外,您可以向 pd.read_excel() 指定工作表名称或索引列表以同时加载多个工作表。这将返回一个字典,其中键是工作表名称或索引,值是相应的数据框。
例如:
sheet_list = ['Sheet1', 'Sheet2'] df_dict = pd.read_excel(xls, sheet_list)
加载所有工作表
如果需要加载工作簿中的所有工作表,请将sheet_name参数设置为无:
df_dict = pd.read_excel(xls, sheet_name=None)
以上是如何使用 Pandas 高效地从大型 Excel 文件加载特定工作表?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。
