首页 后端开发 Python教程 自动执行日常任务的 Python 脚本

自动执行日常任务的 Python 脚本

Nov 29, 2024 pm 02:02 PM

Python Scripts to Automate Your Daily Tasks

每个人都必须拥有的收藏......

Python 凭借其简单性和强大的库改变了我们实现自动化的方式。无论您是技术爱好者、忙碌的专业人士,还是只是想简化日常工作,Python 都可以帮助您自动执行重复性任务,节省时间并提高效率。这里收集了 10 个基本的 Python 脚本,可以帮助您自动化日常生活的各个方面。

让我们开始吧!


1.自动发送电子邮件

手动发送电子邮件,尤其是重复发送的电子邮件,可能非常耗时。使用 Python 的 smtplib 库,您可以轻松地自动化此过程。无论是发送提醒、更新还是个性化消息,这个脚本都可以处理。

import smtplib
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart

def send_email(receiver_email, subject, body):
    sender_email = "your_email@example.com"
    password = "your_password"

    msg = MIMEMultipart()
    msg['From'] = sender_email
    msg['To'] = receiver_email
    msg['Subject'] = subject
    msg.attach(MIMEText(body, 'plain'))

    try:
        with smtplib.SMTP('smtp.gmail.com', 587) as server:
            server.starttls()
            server.login(sender_email, password)
            server.sendmail(sender_email, receiver_email, msg.as_string())
            print("Email sent successfully!")
    except Exception as e:
        print(f"Error: {e}")

# Example usage
send_email("receiver_email@example.com", "Subject Here", "Email body goes here.")

登录后复制
登录后复制

此脚本可以轻松集成到更大的工作流程中,例如发送报告或警报。

2.文件管理器

如果您的下载文件夹一片混乱,那么这个脚本适合您。它按扩展名组织文件,将它们整齐地放入子文件夹中。不再需要筛选数十个文件来找到您需要的内容!

import os
from shutil import move

def organize_folder(folder_path):
    for file in os.listdir(folder_path):
        if os.path.isfile(os.path.join(folder_path, file)):
            ext = file.split('.')[-1]
            ext_folder = os.path.join(folder_path, ext)
            os.makedirs(ext_folder, exist_ok=True)
            move(os.path.join(folder_path, file), os.path.join(ext_folder, file))

# Example usage
organize_folder("C:/Users/YourName/Downloads")

登录后复制
登录后复制

此脚本对于管理 PDF、图像或文档等文件特别有用。

3.网页抓取新闻头条

通过从您最喜爱的网站抓取头条新闻来了解最新新闻。 Python 的“requests”和“BeautifulSoup”库使这个过程变得无缝。

import requests
from bs4 import BeautifulSoup

def fetch_headlines(url):
    response = requests.get(url)
    soup = BeautifulSoup(response.content, "html.parser")
    headlines = [h.text for h in soup.find_all('h2', class_='headline')]
    return headlines

# Example usage
headlines = fetch_headlines("https://news.ycombinator.com/")
print("\n".join(headlines))

登录后复制
登录后复制

无论您是新闻迷还是需要工作更新,此脚本都可以安排每天运行。

4.每日天气通知

从天气更新开始新的一天!此脚本使用 OpenWeatherMap API 获取您所在城市的天气数据并显示温度和天气预报。

import requests

def get_weather(city):
    api_key = "your_api_key"
    url = f"http://api.openweathermap.org/data/2.5/weather?q={city}&appid={api_key}&units=metric"
    response = requests.get(url).json()
    if response.get("main"):
        temp = response['main']['temp']
        weather = response['weather'][0]['description']
        print(f"The current weather in {city} is {temp}°C with {weather}.")
    else:
        print("City not found!")

# Example usage
get_weather("New York")

登录后复制

只需稍加调整,您就可以让它直接向您的手机发送通知。

5.自动化社交媒体帖子

使用 Python 安排社交媒体帖子变得轻而易举。使用“tweepy”库以编程方式发布推文。

import tweepy

def post_tweet(api_key, api_key_secret, access_token, access_token_secret, tweet):
    auth = tweepy.OAuthHandler(api_key, api_key_secret)
    auth.set_access_token(access_token, access_token_secret)
    api = tweepy.API(auth)
    api.update_status(tweet)
    print("Tweet posted!")

# Example usage
post_tweet("api_key", "api_key_secret", "access_token", "access_token_secret", "Hello, Twitter!")

登录后复制

非常适合想要提前计划帖子的社交媒体管理者和内容创建者。

6.PDF 到文本转换

手动从 PDF 中提取文本非常繁琐。该脚本使用“PyPDF2”库简化了流程。

from PyPDF2 import PdfReader

def pdf_to_text(file_path):
    reader = PdfReader(file_path)
    text = ""
    for page in reader.pages:
        text += page.extract_text()
    return text

# Example usage
print(pdf_to_text("sample.pdf"))

登录后复制

非常适合归档或分析文本较多的文档。

7.使用 CSV 进行费用跟踪

通过将费用记录到 CSV 文件中来跟踪您的费用。此脚本可帮助您维护数字记录,以便稍后分析。

import csv

def log_expense(file_name, date, item, amount):
    with open(file_name, mode='a', newline='') as file:
        writer = csv.writer(file)
        writer.writerow([date, item, amount])
        print("Expense logged!")

# Example usage
log_expense("expenses.csv", "2024-11-22", "Coffee", 4.5)

登录后复制

将其变成一种习惯,您就会清楚地了解自己的消费模式。

8.自动化桌面通知

您的计算机上需要提醒或警报吗?该脚本使用“plyer”库发送桌面通知。

import smtplib
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart

def send_email(receiver_email, subject, body):
    sender_email = "your_email@example.com"
    password = "your_password"

    msg = MIMEMultipart()
    msg['From'] = sender_email
    msg['To'] = receiver_email
    msg['Subject'] = subject
    msg.attach(MIMEText(body, 'plain'))

    try:
        with smtplib.SMTP('smtp.gmail.com', 587) as server:
            server.starttls()
            server.login(sender_email, password)
            server.sendmail(sender_email, receiver_email, msg.as_string())
            print("Email sent successfully!")
    except Exception as e:
        print(f"Error: {e}")

# Example usage
send_email("receiver_email@example.com", "Subject Here", "Email body goes here.")

登录后复制
登录后复制

非常适合任务管理和事件提醒。

9.网站可用性检查

使用这个简单的脚本监控您的网站或喜爱的平台的正常运行时间。

import os
from shutil import move

def organize_folder(folder_path):
    for file in os.listdir(folder_path):
        if os.path.isfile(os.path.join(folder_path, file)):
            ext = file.split('.')[-1]
            ext_folder = os.path.join(folder_path, ext)
            os.makedirs(ext_folder, exist_ok=True)
            move(os.path.join(folder_path, file), os.path.join(ext_folder, file))

# Example usage
organize_folder("C:/Users/YourName/Downloads")

登录后复制
登录后复制

对网络开发人员和企业主有用。

10.自动化数据备份

再也不用担心丢失重要文件了。该脚本自动将文件备份到指定位置。

import requests
from bs4 import BeautifulSoup

def fetch_headlines(url):
    response = requests.get(url)
    soup = BeautifulSoup(response.content, "html.parser")
    headlines = [h.text for h in soup.find_all('h2', class_='headline')]
    return headlines

# Example usage
headlines = fetch_headlines("https://news.ycombinator.com/")
print("\n".join(headlines))

登录后复制
登录后复制

每周或每天运行一次,以确保您的数据始终安全。


这 10 个脚本演示了 Python 如何处理重复性任务并简化您的日常生活。从管理文件到在社交媒体上发布,自动化开启了无限的可能性。选择一个脚本,对其进行自定义,并将其集成到您的工作流程中。很快,您就会想知道如果没有 Python 自动化,您是如何生活的!

你会先尝试哪一个?

请在评论部分告诉我们!

以上是自动执行日常任务的 Python 脚本的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

<🎜>:泡泡胶模拟器无穷大 - 如何获取和使用皇家钥匙
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系统,解释
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆树的耳语 - 如何解锁抓钩
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1671
14
CakePHP 教程
1428
52
Laravel 教程
1329
25
PHP教程
1276
29
C# 教程
1256
24
Python与C:学习曲线和易用性 Python与C:学习曲线和易用性 Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python和时间:充分利用您的学习时间 Python和时间:充分利用您的学习时间 Apr 14, 2025 am 12:02 AM

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python vs.C:探索性能和效率 Python vs.C:探索性能和效率 Apr 18, 2025 am 12:20 AM

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

学习Python:2小时的每日学习是否足够? 学习Python:2小时的每日学习是否足够? Apr 18, 2025 am 12:22 AM

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python vs. C:了解关键差异 Python vs. C:了解关键差异 Apr 21, 2025 am 12:18 AM

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

Python标准库的哪一部分是:列表或数组? Python标准库的哪一部分是:列表或数组? Apr 27, 2025 am 12:03 AM

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python:自动化,脚本和任务管理 Python:自动化,脚本和任务管理 Apr 16, 2025 am 12:14 AM

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

科学计算的Python:详细的外观 科学计算的Python:详细的外观 Apr 19, 2025 am 12:15 AM

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

See all articles