目录
简介
拟合优度检验
数据直方图
候选分布
拟合每个分布并计算SSE
打印最佳拟合的分布参数
首页 后端开发 Python教程 如何使用 Python 中的 Scipy 将经验数据拟合到理论分布?

如何使用 Python 中的 Scipy 将经验数据拟合到理论分布?

Nov 29, 2024 pm 09:30 PM

How Can I Fit Empirical Data to Theoretical Distributions Using Scipy in Python?

使用 Scipy 将经验分布拟合到理论分布

简介


您有一个整数值的大型数据集,旨在计算 p 值,即概率遇到更高的价值。为了确定这些概率,您需要寻找近似数据分布的理论分布。本文探讨了如何使用 Python 的 Scipy 包来实现此目的。


拟合分布


Scipy 的 scipy.stats 模块提供了连续和离散的广泛集合概率分布。每个分布都有自己的参数来表征其形状和行为。目标是根据拟合优度检验找到最适合您的经验数据的分布。


拟合优度检验


误差平方和 (SSE)


One方法是利用误差平方和 (SSE) 作为拟合优度度量。 SSE 计算经验概率密度函数和理论概率密度函数之间的平方差。具有最小 SSE 的分布被认为是最佳拟合。


Python 实现


以下 Python 代码演示了如何使数据符合理论分布使用 SSE:


<br>导入 pandas 作为 pd<br>导入numpy as np<br>import scipy.stats as st<br>import matplotlib.pyplot as plt<p>data = pd.read_csv('data.csv') # 替换为你的数据文件</p>
<h1 id="数据直方图">数据直方图</h1>
<p>plt.hist(data, bins=50)<br>plt.show()</p>
<h1 id="候选分布">候选分布</h1>
<p>dist_names = ['norm', 'expon', 'gamma', 'beta']</p>
<h1 id="拟合每个分布并计算SSE">拟合每个分布并计算SSE</h1>
<p>best_distribution = None<br>min_sse = np.inf<br>for dist in dist_names:</p>
<div class="code" style="position:relative; padding:0px; margin:0px;"><pre class="brush:php;toolbar:false">dist = getattr(st, dist)
params = dist.fit(data)

# Calculate SSE
sse = np.mean((dist.pdf(data, *params) - np.histogram(data, bins=50, density=True)[0]) ** 2)

# Update the best distribution if necessary
if sse < min_sse:
    min_sse = sse
    best_distribution = dist, params
登录后复制

打印最佳拟合的分布参数

print(best_distribution[0].name, best_distribution[1])

此代码提供最佳拟合分布的名称及其估计参数。您可以使用这些参数来计算 p 值并评估分布的拟合优度。

以上是如何使用 Python 中的 Scipy 将经验数据拟合到理论分布?的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

<🎜>:泡泡胶模拟器无穷大 - 如何获取和使用皇家钥匙
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系统,解释
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆树的耳语 - 如何解锁抓钩
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1673
14
CakePHP 教程
1429
52
Laravel 教程
1333
25
PHP教程
1278
29
C# 教程
1257
24
Python与C:学习曲线和易用性 Python与C:学习曲线和易用性 Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

学习Python:2小时的每日学习是否足够? 学习Python:2小时的每日学习是否足够? Apr 18, 2025 am 12:22 AM

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python vs.C:探索性能和效率 Python vs.C:探索性能和效率 Apr 18, 2025 am 12:20 AM

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

Python vs. C:了解关键差异 Python vs. C:了解关键差异 Apr 21, 2025 am 12:18 AM

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

Python标准库的哪一部分是:列表或数组? Python标准库的哪一部分是:列表或数组? Apr 27, 2025 am 12:03 AM

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python:自动化,脚本和任务管理 Python:自动化,脚本和任务管理 Apr 16, 2025 am 12:14 AM

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

科学计算的Python:详细的外观 科学计算的Python:详细的外观 Apr 19, 2025 am 12:15 AM

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

Web开发的Python:关键应用程序 Web开发的Python:关键应用程序 Apr 18, 2025 am 12:20 AM

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优

See all articles