如何在 Pandas DataFrame 中保留缺失值的整数数据类型?
ndarray 与 DataFrame:使用 NaN 保留整数类型
对于维护 DataFrame 中整数类型列的完整性至关重要的操作场景在容纳缺失值的同时,会出现固有的挑战。 NumPy 数组是 Pandas DataFrames 中的基础数据结构,它对数据类型施加限制,特别是在整数元素和 NaN 值的共存方面。
NaN 困境
NumPy 的无法在整数数组中表示 NaN 源于设计限制。这在希望保留整数数据类型的场景中提出了一个难题。
尝试和不一致
已经做出了规避这一限制的努力,例如利用带有 coerce_float=False 的 from_records() 函数并尝试使用 NumPy 掩码数组。然而,这些方法始终将列数据类型转换为浮点数。
当前的解决方案和限制
在 NumPy 对缺失值的处理方面取得进展之前,仍然有有限的选择。一种潜在的解决方法是用哨兵值替换 NaN,例如任意选择的与有效数据不同的大整数,可用于识别处理过程中丢失的条目。
或者,最新版本的 pandas 中采用的解决方法(0.24 起)是使用 Int64 扩展 dtype(大写“Int”)而不是默认的 int64(小写)。 Int64 支持可选的整数 NA 值,为该特定问题提供了解决方法。
以上是如何在 Pandas DataFrame 中保留缺失值的整数数据类型?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优
