如何找到 Pandas DataFrame 每组中最常见的值?
为 DataFrame 中的每个组选择最常见的值
要清理包含多个字符串列的数据,需要按某些列对行进行分组并选择最常见的值每个组中特定列的通用值。本文演示了如何使用强大的 Pandas 库完成此任务。
特定错误消息的代码更正
初始查询中提供的代码包含一些错误,已在下面更正:
import pandas as pd source = pd.DataFrame({ 'Country': ['USA', 'USA', 'Russia', 'USA'], 'City': ['New York', 'New York', 'Saint Petersburg', 'New York'], 'Short Name': ['NY', 'New', 'Spb', 'NY']}) # Group by 'Country' and 'City' and calculate the most frequent 'Short Name' in each group result = source.groupby(['Country', 'City'])['Short Name'].apply(lambda x: pd.Series.mode(x)[0][0])
说明
- 使用最新的Series.mode: 原始代码尝试将statistics.mode应用于每个组,这不能很好地处理多种模式,并且可能会引发错误。相反,使用更新的 pd.Series.mode 函数,它显式返回所有模式的 Series,解决了问题。
- 处理多个模式: 确保只有一个选择最常见的值后,代码会从 Series.mode 返回的 Series 中提取第一个元素。这是通过使用 0 语法来实现的。
其他选项
如果首选 DataFrame 作为结果:
result = source.groupby(['Country', 'City'])['Short Name'].agg(pd.Series.mode).to_frame()
如果您想为每个单独的行mode:
result = source.groupby(['Country', 'City'])['Short Name'].apply(pd.Series.mode)
注意:如果您愿意接受任何模式值作为选择,您可以使用 lambda 函数从系列中提取第一个模式:
result = source.groupby(['Country', 'City'])['Short Name'].agg(lambda x: pd.Series.mode(x)[0])
以上是如何找到 Pandas DataFrame 每组中最常见的值?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。
