如何在 Matplotlib 中创建不连续轴?
在 Matplotlib 中创建不连续轴
简介:
使用 Matplotlib 创建绘图时,通常使用连续的 x 轴。然而,可能存在需要不连续轴的情况,其中 x 轴值中出现间隙或跳跃。这对于显示缺失或分布稀疏的值的数据非常有用。
使用子图:
创建不连续轴的一种方法是使用子图。每个子图都可以分配不同范围的 x 轴值,从而导致子图之间存在间隙。这是一个简单的示例:
import matplotlib.pyplot as plt x1 = np.linspace(0, 5, 100) y1 = np.sin(x1) x2 = np.linspace(10, 15, 100) y2 = np.cos(x2) plt.subplot(1, 2, 1) plt.plot(x1, y1) plt.subplot(1, 2, 2) plt.plot(x2, y2) plt.show()
自定义轴变换:
创建不连续轴的另一种方法是使用自定义轴变换。通过定义新的转换类,我们可以指定数据如何映射到轴。以下代码演示了这种方法:
import matplotlib.pyplot as plt from matplotlib.transforms import Transform from matplotlib.ticker import LogLocator class DiscontinuousTransform(Transform): def __init__(self, breaks): Transform.__init__(self) self.breaks = breaks def transform(self, values): new_values = values.copy() for break in self.breaks: new_values[values > break] += 1 return new_values def inverted(self): return InvertedDiscontinuousTransform(self.breaks) class InvertedDiscontinuousTransform(Transform): def __init__(self, breaks): Transform.__init__(self) self.breaks = breaks def transform(self, values): new_values = values.copy() for break in self.breaks: new_values[values >= break] -= 1 return new_values def inverted(self): return DiscontinuousTransform(self.breaks) x = np.linspace(0, 10, 100) y = np.sin(x) trans = DiscontinuousTransform([5]) locator = LogLocator(base=10) locator.set_params(minor_locator=None) plt.plot(x, y, transform=trans) plt.gca().xaxis.set_major_locator(locator) plt.gca().xaxis.set_major_formatter(plt.FormatStrFormatter("%0.0f\n(pert)")) plt.show()
结论:
在 Matplotlib 中创建不连续轴可以使用子图或自定义轴转换来实现。自定义转换方法提供了更大的灵活性和对轴行为的控制。这两种方法都可以有效地可视化有间隙或不连续的数据。
以上是如何在 Matplotlib 中创建不连续轴?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优
