如何从嵌套字典创建具有分层索引的 Pandas DataFrame?
从具有层次索引的嵌套字典构造 pandas DataFrame
本文解决了将嵌套字典转换为 pandas DataFrame 的需要分层索引。字典的结构以 UserIds 作为第一级,Categories 作为第二级,各种属性作为第三级,这对创建所需的 DataFrame 结构提出了挑战。
构造具有预期分层索引的 DataFrame ,第一个解决方案涉及重塑嵌套字典。字典中的每个键应该是与多索引的值对应的元组。使用 pd.DataFrame.from_dict 并设置 orient='index',可以创建 DataFrame:
user_dict = {12: {'Category 1': {'att_1': 1, 'att_2': 'whatever'}, 'Category 2': {'att_1': 23, 'att_2': 'another'}}, 15: {'Category 1': {'att_1': 10, 'att_2': 'foo'}, 'Category 2': {'att_1': 30, 'att_2': 'bar'}}} pd.DataFrame.from_dict({(i,j): user_dict[i][j] for i in user_dict.keys() for j in user_dict[i].keys()}, orient='index')
另一种方法是通过连接组件数据帧来构造 DataFrame。此方法为每个 UserId 附加 DataFrame,如下所示:
user_ids = [] frames = [] for user_id, d in user_dict.iteritems(): user_ids.append(user_id) frames.append(pd.DataFrame.from_dict(d, orient='index')) pd.concat(frames, keys=user_ids)
通过实现其中一种方法,可以从嵌套字典构造具有分层索引的 pandas DataFrame,从而简化数据的组织和分析.
以上是如何从嵌套字典创建具有分层索引的 Pandas DataFrame?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优
