如何在 NumPy 数组中查找多个值的行索引?
查找 Numpy 数组中多个值的行索引
问题:
我们给定一个 NumPy 数组 X 和一组值 searched_values。目标是确定 X 中与 searched_values 中的每个值相对应的行索引。
例如,对于以下输入数组:
X = np.array([[4, 2], [9, 3], [8, 5], [3, 3], [5, 6]]) searched_values = np.array([[4, 2], [3, 3], [5, 6]])
所需的输出应该是:
[0, 3, 4]
方法#1:NumPy广播
此方法利用 NumPy 广播在 X 与每行 searched_values 之间执行逐元素比较:
np.where((X == searched_values[:, None]).all(-1))[1]
方法 #2:使用 np 进行内存高效转换.in1d
为了节省内存,我们可以转换每一行将 X 和 searched_values 转换为线性索引等价物,然后应用 np.in1d 进行交集:
dims = X.max(0) + 1 out = np.where(np.in1d(np.ravel_multi_index(X.T, dims), np.ravel_multi_index(searched_values.T, dims)))[0]
方法#3:使用 np.searchsorted
另一种内存高效转换使用 np.searchsorted 的内存高效方法和线性索引的相同原理转换:
dims = X.max(0) + 1 X1D = np.ravel_multi_index(X.T, dims) searched_valuesID = np.ravel_multi_index(searched_values.T, dims) sidx = X1D.argsort() out = sidx[np.searchsorted(X1D, searched_valuesID, sorter=sidx)]
理解 np.ravel_multi_index
np.ravel_multi_index 将 X 的每一行转换为唯一的线性索引等价物。它对 n 维索引的 2D 数组以及这些索引要映射到的 n 维网格的形状进行操作。
例如,在我们的示例中,X 的每一行代表一个索引元组对于尺寸变暗的 2D 网格。 np.ravel_multi_index 将每个元组映射到唯一的线性索引。
以上是如何在 NumPy 数组中查找多个值的行索引?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。
