如何在 Shell 脚本中实现具有预定义持续时间的超时功能?
具有预定义持续时间的超时函数
在 shell 脚本中,有一种机制可以终止长时间运行的任务,以避免过度等待。这里面临的挑战是将函数包装在超时脚本中,如果超过指定的时间限制,则返回 False。
一种方法是设置一个异步计时器,在预定义的时间间隔后触发 False 响应。幸运的是,可以使用 signal 库(在基于 UNIX 的系统上可用)中的信号处理程序来实现这样的解决方案。
该过程涉及创建利用信号的自定义装饰器 (@timeout)。 Alarm() 设置所需时间间隔的闹钟。在装饰函数中,当警报到期时,会引发 TimeoutError 异常,从而有效地中断操作。
要将此解决方案合并到您的代码中,请将以下代码保存为 timeout.py 并导入它:
import errno import os import signal import functools class TimeoutError(Exception): pass def timeout(seconds=10, error_message=os.strerror(errno.ETIME)): def decorator(func): def _handle_timeout(signum, frame): raise TimeoutError(error_message) @functools.wraps(func) def wrapper(*args, **kwargs): signal.signal(signal.SIGALRM, _handle_timeout) signal.alarm(seconds) try: result = func(*args, **kwargs) finally: signal.alarm(0) return result return wrapper return decorator
现在,在您的应用程序代码中,使用 @timeout 装饰器注释任何可能长时间运行的函数。例如:
from timeout import timeout # Short timeout @timeout(5) def slow_function(): # ... # Default timeout @timeout def another_slow_function(): # ... # Customize timeout and error message @timeout(30, error_message="Task timed out") def yet_another_slow_function(): # ...
这种方法确保如果函数花费的时间超过指定的超时间隔,它将引发 TimeoutError 并返回 False,从而允许您优雅地处理意外延迟。
以上是如何在 Shell 脚本中实现具有预定义持续时间的超时功能?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优
