首页 > 后端开发 > Python教程 > 用离散语义熵和困惑度检测法学硕士的幻觉

用离散语义熵和困惑度检测法学硕士的幻觉

Linda Hamilton
发布: 2024-12-09 11:25:11
原创
274 人浏览过

Detecting Hallucinations in LLMs with Discrete Semantic Entropy and Perplexity

使用大型语言模型 (LLM) 时,发现幻觉可能很棘手。我们可以使用困惑度、蕴涵和离散语义熵来更好地识别潜在的幻觉,而不是仅仅依靠法学硕士作为判断(这仍然可能会出错,并且许多评估框架仅使用它来检测幻觉)。虽然我在这里使用法学硕士来检测蕴涵,但这不是必要的。也就是说,这种方法最适合那些有直接、事实答案的问题——那些不太模糊或主观的问题。您如何看待使用这些组合指标来更好地检测幻觉?我知道代码可以改进/优化,但目标是快速测试它的工作原理。

from openai import OpenAI
import numpy as np
from pydantic import BaseModel
import time

client = OpenAI(api_key="key")

class CheckEntailment(BaseModel):
    label: str

def check_entailment(fragment1: str, fragment2: str) -> bool:
    """check entailment"""
    messages = [
        {
            "role": "user",
            "content": f"""You have two responses from a large language model. 
                 Check if the meaning of one repsonse is entailed by the other, or if there is a contradiction. 
                 Return '0' if entailment. Return '1' if contradiction. 
                 Return only the label, without any explanation. 
                 \n Response1: \n {fragment1}\n\n Response2: \n {fragment2}""",
        }
    ]
    completion = client.beta.chat.completions.parse(
        model="gpt-4o-mini",
        messages=messages,
        temperature=0.1,
        logprobs=True,
        top_logprobs=2,
        response_format=CheckEntailment,
    )
    entailment = False
    # print(completion.choices[0].logprobs.content[3].top_logprobs)
    for top_logprob in completion.choices[0].logprobs.content[3].top_logprobs:
        print(top_logprob.token, np.round(np.exp(top_logprob.logprob), 2))
        if "0" in top_logprob.token and np.exp(top_logprob.logprob) > 0.7:
            entailment = True
    return entailment


def calculate_entropy(probs):
    """
    Calculate the entropy
    """
    probs = np.array(probs)
    probs = probs / probs.sum()
    probs = probs[probs > 0]
    entropy = -np.sum(probs * np.log2(probs))
    return entropy


some_tricky_questions = [
    "Which state does Alabama have its longest border with? Is it Florida or Tennessee?",
    "Who hosted the British Gameshow Countdown in 2007: a) Nick Hewer b) Richard Whiteley c) Jeff Stelling?",
    "Trivia question: Which Black Eyed Peas band member was the only one to host Saturday Night Live?",
    "What year in the 1980s were the FIS Alpine World Ski Championships hosted in Argentina?",
    "How many Brazilian numbers are there between 1-6?",
    "Which Israeli mathematician founded an online sequences repository in the 1970s?",
    "Write the 7 english words that have three consecutive double letters. No need to provide explanations, just say the words.",
    # adding two questions where it should not hallucinate
    "What is the capital of India?",
    "what is the full form of CPU?",
]


for question in some_tricky_questions:
    print("question", question)
    messages = [{"role": "user", "content": f"{question}"}]
    gpt_response = client.chat.completions.create(
        model="gpt-4o-mini",
        messages=messages,
        temperature=0.1,
        logprobs=True,
        max_completion_tokens=60,
    )
    time.sleep(2)
    # get perplexity score using a low temperature response
    logprobs = [token.logprob for token in gpt_response.choices[0].logprobs.content]
    perplexity_score = np.round(np.exp(-np.mean(logprobs)), 2)
    # initialize clusters with the first response
    clusters = [[gpt_response.choices[0].message.content]]
    # generate some more responses using higher temperature and check entailment
    gpt_response = client.chat.completions.create(
        model="gpt-4o-mini",
        messages=messages,
        n=7,
        temperature=0.9,
        logprobs=True,
        max_completion_tokens=60,
    )
    time.sleep(2)
    # check entailment and form clusters
    responses = [choice.message.content for choice in gpt_response.choices]

    for response in responses[1:]:
        found_cluster = False
        for cluster in clusters:
            if check_entailment(cluster[0], response):
                cluster.append(response)
                found_cluster = True
                break
        if not found_cluster:
            clusters.append([response])
    cluster_probs = [len(cluster) / (len(responses) + 1) for cluster in clusters]
    discrete_entropy = calculate_entropy(cluster_probs)
    print("clusters", clusters)
    print("no of clusters", len(clusters))
    print("perplexity", perplexity_score)
    print("entropy", discrete_entropy)

登录后复制

以上是用离散语义熵和困惑度检测法学硕士的幻觉的详细内容。更多信息请关注PHP中文网其他相关文章!

来源:dev.to
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
作者最新文章
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板