如何按多列升序和降序对 Pandas DataFrame 进行排序?
按多列对 Pandas Dataframe 进行排序
按多列对 Pandas Dataframe 进行排序是数据分析中的常见操作。考虑一个包含“a”、“b”和“c”列的数据框。要按“b”列升序和“c”列降序对此数据框进行排序,请按照以下步骤操作:
从 Pandas 版本 0.17.0 开始,排序方法已被弃用,转而使用 sort_values。从版本 0.20.0 开始,排序已被完全删除。但是,参数和结果保持不变:
df.sort_values(['a', 'b'], ascending=[True, False])
使用已弃用的排序方法的等效方法是:
df.sort(['a', 'b'], ascending=[True, False])
例如,考虑一个数据帧 df1 在列中具有随机整数值'a' 和 'b':
import pandas as pd import numpy as np df1 = pd.DataFrame(np.random.randint(1, 5, (10, 2)), columns=['a', 'b'])
按 'a' 对此数据框进行排序升序和降序的“b”给出:
df1.sort(['a', 'b'], ascending=[True, False])
a b 2 1 4 7 1 3 1 1 2 3 1 2 4 3 2 6 4 4 0 4 3 9 4 3 5 4 1 8 4 1
请记住,默认情况下排序方法不是就地的。要使用排序后的值更新 df1,请将排序方法的结果分配给 df1 或在方法调用中使用 inplace=True:
df1 = df1.sort(['a', 'b'], ascending=[True, False])
或
df1.sort(['a', 'b'], ascending=[True, False], inplace=True)
以上是如何按多列升序和降序对 Pandas DataFrame 进行排序?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。
