首页 > 后端开发 > Python教程 > PyTorch 中的 CIFAR

PyTorch 中的 CIFAR

Linda Hamilton
发布: 2024-12-16 12:57:15
原创
519 人浏览过

请我喝杯咖啡☕

*我的帖子解释了 CIFAR-10。

CIFAR10()可以使用CIFAR-10数据集,如下所示:

*备忘录:

  • 第一个参数是 root(必需类型:str 或 pathlib.Path)。 *绝对或相对路径都是可能的。
  • 第二个参数是 train(Optional-Default:True-Type:bool)。 *如果为 True,则使用训练数据(50,000 张图像),如果为 False,则使用测试数据(10,000 张图像)。
  • 第三个参数是transform(Optional-Default:None-Type:callable)。
  • 第四个参数是 target_transform(Optional-Default:None-Type:callable)。
  • 第五个参数是 download(可选-默认:False-类型:bool): *备注:
    • 如果为 True,则从互联网下载数据集并解压(解压)到根目录。
    • 如果为 True 并且数据集已下载,则将其提取。
    • 如果为 True 并且数据集已下载并提取,则不会发生任何事情。
    • 如果数据集已经下载并提取,则应该为 False,因为它速度更快。
    • 您可以从这里手动下载并提取数据集(cifar-10-python.tar.gz)到data/cifar-10-batches-py/。
from torchvision.datasets import CIFAR10

train_data = CIFAR10(
    root="data"
)

train_data = CIFAR10(
    root="data",
    train=True,
    transform=None,
    target_transform=None,
    download=False
)

test_data = CIFAR10(
    root="data",
    train=False
)

len(train_data), len(test_data)
# (50000, 10000)

train_data
# Dataset CIFAR10
#     Number of datapoints: 50000
#     Root location: data
#     Split: Train

train_data.root
# 'data'

train_data.train
# True

print(train_data.transform)
# None

print(train_data.target_transform)
# None

train_data.download
# bound method CIFAR10.download of Dataset CIFAR10
#     Number of datapoints: 50000
#     Root location: data
#     Split: Train>

len(train_data.classes)
# 10

train_data.classes
# ['airplane', 'automobile', 'bird', 'cat', 'deer',
#  'dog', 'frog', 'horse', 'ship', 'truck']

train_data[0]
# (<PIL.Image.Image image mode=RGB size=32x32>, 6)

train_data[1]
# (<PIL.Image.Image image mode=RGB size=32x32>, 9)

train_data[2]
# (<PIL.Image.Image image mode=RGB size=32x32>, 9)

train_data[3]
# (<PIL.Image.Image image mode=RGB size=32x32>, 4)

train_data[4]
# (<PIL.Image.Image image mode=RGB size=32x32>, 1)

import matplotlib.pyplot as plt

def show_images(data, main_title=None):
    plt.figure(figsize=(10, 5))
    plt.suptitle(t=main_title, y=1.0, fontsize=14)
    for i, (im, lab) in enumerate(data, start=1):
        plt.subplot(2, 5, i)
        plt.title(label=lab)
        plt.imshow(X=im)
        if i == 10:
            break
    plt.tight_layout()
    plt.show()

show_images(data=train_data, main_title="train_data")
show_images(data=test_data, main_title="test_data")
登录后复制

CIFARin PyTorch

CIFARin PyTorch

以上是PyTorch 中的 CIFAR的详细内容。更多信息请关注PHP中文网其他相关文章!

来源:dev.to
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
作者最新文章
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板