如何在 groupby().sum() 操作后正确向 Pandas DataFrame 添加新列?
从 pandas groupby().sum() 的输出创建新列
使用 groupby() 对 Pandas DataFrame 中的列执行计算时函数时,通常需要将结果合并回 DataFrame 中。实现此目的的一种方法是根据分组计算创建一个新列。
在提供的示例中,目标是创建一个新列 Data4,其中包含每个日期的 Data3 列的总和.
所提供的代码尝试将分组结果直接分配给新列,但它会产生 NaN 值。要解决这个问题,应该使用transform()方法:
df['Data4'] = df['Data3'].groupby(df['Date']).transform('sum')
transform()方法返回一个与DataFrame索引对齐的Series,允许它直接添加为新列。 'sum' 参数指定我们要执行的计算。
下面更新的代码演示了transform()的正确应用:
import pandas as pd df = pd.DataFrame({ 'Date': ['2015-05-08', '2015-05-07', '2015-05-06', '2015-05-05', '2015-05-08', '2015-05-07', '2015-05-06', '2015-05-05'], 'Sym': ['aapl', 'aapl', 'aapl', 'aapl', 'aaww', 'aaww', 'aaww', 'aaww'], 'Data2': [11, 8, 10, 15, 110, 60, 100, 40], 'Data3': [5, 8, 6, 1, 50, 100, 60, 120] }) df['Data4'] = df['Data3'].groupby(df['Date']).transform('sum') print(df)
修改后的代码的输出正确计算了每个日期的 Data3 的总和,并将结果添加到 DataFrame 作为新列 Data4:
Date Sym Data2 Data3 Data4 0 2015-05-08 aapl 11 5 55 1 2015-05-07 aapl 8 8 108 2 2015-05-06 aapl 10 6 66 3 2015-05-05 aapl 15 1 121 4 2015-05-08 aaww 110 50 55 5 2015-05-07 aaww 60 100 108 6 2015-05-06 aaww 100 60 66 7 2015-05-05 aaww 40 120 121
以上是如何在 groupby().sum() 操作后正确向 Pandas DataFrame 添加新列?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Linux终端中查看Python版本时遇到权限问题的解决方法当你在Linux终端中尝试查看Python的版本时,输入python...

使用FiddlerEverywhere进行中间人读取时如何避免被检测到当你使用FiddlerEverywhere...

在使用Python的pandas库时,如何在两个结构不同的DataFrame之间进行整列复制是一个常见的问题。假设我们有两个Dat...

Uvicorn是如何持续监听HTTP请求的?Uvicorn是一个基于ASGI的轻量级Web服务器,其核心功能之一便是监听HTTP请求并进�...

如何在10小时内教计算机小白编程基础?如果你只有10个小时来教计算机小白一些编程知识,你会选择教些什么�...

攻克Investing.com的反爬虫策略许多人尝试爬取Investing.com(https://cn.investing.com/news/latest-news)的新闻数据时,常常�...
