在 PyTorch 中移动 MNIST
请我喝杯咖啡☕
*我的帖子解释了移动 MNIST。
MovingMNIST() 可以使用 Moving MNIST 数据集,如下所示:
*备忘录:
- 第一个参数是 root(必需类型:str 或 pathlib.Path)。 *绝对或相对路径都是可能的。
- 第二个参数是 split(Optional-Default:None-Type:str):
*备注:
- 没有,可以设置“train”或“test”。
- 如果为 None,则返回每个视频的所有 20 帧(图像),忽略 split_ratio。
- 第三个参数是 split_ratio(Optional-Default:10-Type:int):
*备注:
- 如果 split 为“train”,则返回 data[:, :split_ratio]。
- 如果 split 为“test”,则返回 data[:, split_ratio:]。
- 如果 split 为 None,则忽略它。 忽略 split_ratio。
- 第四个参数是transform(Optional-Default:None-Type:callable)。
- 第五个参数是 download(可选-默认:False-类型:bool):
*备注:
- 如果为 True,则数据集将从互联网下载到 root。
- 如果为 True 并且数据集已下载,则将其提取。
- 如果为 True 并且数据集已下载,则不会发生任何事情。
- 如果数据集已经下载,则应该为 False,因为它速度更快。
- 您可以从此处手动下载并提取数据集,例如数据/移动MNIST/。
from torchvision.datasets import MovingMNIST all_data = MovingMNIST( root="data" ) all_data = MovingMNIST( root="data", split=None, split_ratio=10, download=False, transform=None ) train_data = MovingMNIST( root="data", split="train" ) test_data = MovingMNIST( root="data", split="test" ) len(all_data), len(train_data), len(test_data) # (10000, 10000, 10000) len(all_data[0]), len(train_data[0]), len(test_data[0]) # (20, 10, 10) all_data # Dataset MovingMNIST # Number of datapoints: 10000 # Root location: data all_data.root # 'data' print(all_data.split) # None all_data.split_ratio # 10 all_data.download # <bound method MovingMNIST.download of Dataset MovingMNIST # Number of datapoints: 10000 # Root location: data> print(all_data.transform) # None from torchvision.datasets import MovingMNIST import matplotlib.pyplot as plt plt.figure(figsize=(10, 3)) plt.subplot(1, 3, 1) plt.title("all_data") plt.imshow(all_data[0].squeeze()[0]) plt.subplot(1, 3, 2) plt.title("train_data") plt.imshow(train_data[0].squeeze()[0]) plt.subplot(1, 3, 3) plt.title("test_data") plt.imshow(test_data[0].squeeze()[0]) plt.show()
from torchvision.datasets import MovingMNIST all_data = MovingMNIST( root="data", split=None ) train_data = MovingMNIST( root="data", split="train" ) test_data = MovingMNIST( root="data", split="test" ) def show_images(data, main_title=None): plt.figure(figsize=(10, 8)) plt.suptitle(t=main_title, y=1.0, fontsize=14) for i, image in enumerate(data, start=1): plt.subplot(4, 5, i) plt.tight_layout(pad=1.0) plt.title(i) plt.imshow(image) plt.show() show_images(data=all_data[0].squeeze(), main_title="all_data") show_images(data=train_data[0].squeeze(), main_title="train_data") show_images(data=test_data[0].squeeze(), main_title="test_data")
from torchvision.datasets import MovingMNIST all_data = MovingMNIST( root="data", split=None ) train_data = MovingMNIST( root="data", split="train" ) test_data = MovingMNIST( root="data", split="test" ) import matplotlib.pyplot as plt def show_images(data, main_title=None): plt.figure(figsize=(10, 8)) plt.suptitle(t=main_title, y=1.0, fontsize=14) col = 5 for i, image in enumerate(data, start=1): plt.subplot(4, 5, i) plt.tight_layout(pad=1.0) plt.title(i) plt.imshow(image.squeeze()[0]) if i == col: break plt.show() show_images(data=all_data, main_title="all_data") show_images(data=train_data, main_title="train_data") show_images(data=test_data, main_title="test_data")
from torchvision.datasets import MovingMNIST import matplotlib.animation as animation all_data = MovingMNIST( root="data" ) import matplotlib.pyplot as plt from IPython.display import HTML figure, axis = plt.subplots() # ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ `ArtistAnimation()` ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ images = [] for image in all_data[0].squeeze(): images.append([axis.imshow(image)]) ani = animation.ArtistAnimation(fig=figure, artists=images, interval=100) # ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ `ArtistAnimation()` ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ # ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ `FuncAnimation()` ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ # def animate(i): # axis.imshow(all_data[0].squeeze()[i]) # # ani = animation.FuncAnimation(fig=figure, func=animate, # frames=20, interval=100) # ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ `FuncAnimation()` ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ # ani.save('result.gif') # Save the animation as a `.gif` file plt.ioff() # Hide a useless image # ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ Show animation ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ HTML(ani.to_jshtml()) # Animation operator # HTML(ani.to_html5_video()) # Animation video # ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ Show animation ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ # ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ Show animation ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ # plt.rcParams["animation.html"] = "jshtml" # Animation operator # plt.rcParams["animation.html"] = "html5" # Animation video # ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ Show animation ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
from torchvision.datasets import MovingMNIST from ipywidgets import interact, IntSlider all_data = MovingMNIST( root="data" ) import matplotlib.pyplot as plt from IPython.display import HTML def func(i): plt.imshow(all_data[0].squeeze()[i]) interact(func, i=(0, 19, 1)) # interact(func, i=IntSlider(min=0, max=19, step=1, value=0)) # ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ Set the start value ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ plt.show()
以上是在 PyTorch 中移动 MNIST的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优
