首页 > 后端开发 > Python教程 > 在 PyTorch 中移动 MNIST

在 PyTorch 中移动 MNIST

Linda Hamilton
发布: 2024-12-17 04:35:25
原创
175 人浏览过

请我喝杯咖啡☕

*我的帖子解释了移动 MNIST。

MovingMNIST() 可以使用 Moving MNIST 数据集,如下所示:

*备忘录:

  • 第一个参数是 root(必需类型:str 或 pathlib.Path)。 *绝对或相对路径都是可能的。
  • 第二个参数是 split(Optional-Default:None-Type:str): *备注:
    • 没有,可以设置“train”或“test”。
    • 如果为 None,则返回每个视频的所有 20 帧(图像),忽略 split_ratio。
  • 第三个参数是 split_ratio(Optional-Default:10-Type:int): *备注:
    • 如果 split 为“train”,则返回 data[:, :split_ratio]。
    • 如果 split 为“test”,则返回 data[:, split_ratio:]。
    • 如果 split 为 None,则忽略它。 忽略 split_ratio。
  • 第四个参数是transform(Optional-Default:None-Type:callable)。
  • 第五个参数是 download(可选-默认:False-类型:bool): *备注:
    • 如果为 True,则数据集将从互联网下载到 root。
    • 如果为 True 并且数据集已下载,则将其提取。
    • 如果为 True 并且数据集已下载,则不会发生任何事情。
    • 如果数据集已经下载,则应该为 False,因为它速度更快。
    • 您可以从此处手动下载并提取数据集,例如数据/移动MNIST/。
from torchvision.datasets import MovingMNIST

all_data = MovingMNIST(
    root="data"
)

all_data = MovingMNIST(
    root="data",
    split=None,
    split_ratio=10,
    download=False,
    transform=None
)

train_data = MovingMNIST(
    root="data",
    split="train"
)

test_data = MovingMNIST(
    root="data",
    split="test"
)

len(all_data), len(train_data), len(test_data)
# (10000, 10000, 10000)

len(all_data[0]), len(train_data[0]), len(test_data[0])
# (20, 10, 10)

all_data
# Dataset MovingMNIST
#     Number of datapoints: 10000
#     Root location: data

all_data.root
# 'data'

print(all_data.split)
# None

all_data.split_ratio
# 10

all_data.download
# <bound method MovingMNIST.download of Dataset MovingMNIST
#     Number of datapoints: 10000
#     Root location: data>

print(all_data.transform)
# None

from torchvision.datasets import MovingMNIST

import matplotlib.pyplot as plt

plt.figure(figsize=(10, 3))

plt.subplot(1, 3, 1)
plt.title("all_data")
plt.imshow(all_data[0].squeeze()[0])

plt.subplot(1, 3, 2)
plt.title("train_data")
plt.imshow(train_data[0].squeeze()[0])

plt.subplot(1, 3, 3)
plt.title("test_data")
plt.imshow(test_data[0].squeeze()[0])

plt.show()
登录后复制

MovingMNIST in PyTorch

from torchvision.datasets import MovingMNIST

all_data = MovingMNIST(
    root="data",
    split=None
)

train_data = MovingMNIST(
    root="data",
    split="train"
)

test_data = MovingMNIST(
    root="data",
    split="test"
)

def show_images(data, main_title=None):
    plt.figure(figsize=(10, 8))
    plt.suptitle(t=main_title, y=1.0, fontsize=14)
    for i, image in enumerate(data, start=1):
        plt.subplot(4, 5, i)
        plt.tight_layout(pad=1.0)
        plt.title(i)
        plt.imshow(image)
    plt.show()

show_images(data=all_data[0].squeeze(), main_title="all_data")
show_images(data=train_data[0].squeeze(), main_title="train_data")
show_images(data=test_data[0].squeeze(), main_title="test_data")
登录后复制

MovingMNIST in PyTorch

MovingMNIST in PyTorch

MovingMNIST in PyTorch

from torchvision.datasets import MovingMNIST

all_data = MovingMNIST(
    root="data",
    split=None
)

train_data = MovingMNIST(
    root="data",
    split="train"
)

test_data = MovingMNIST(
    root="data",
    split="test"
)

import matplotlib.pyplot as plt

def show_images(data, main_title=None):
    plt.figure(figsize=(10, 8))
    plt.suptitle(t=main_title, y=1.0, fontsize=14)
    col = 5
    for i, image in enumerate(data, start=1):
        plt.subplot(4, 5, i)
        plt.tight_layout(pad=1.0)
        plt.title(i)
        plt.imshow(image.squeeze()[0])
        if i == col:
            break
    plt.show()

show_images(data=all_data, main_title="all_data")
show_images(data=train_data, main_title="train_data")
show_images(data=test_data, main_title="test_data")
登录后复制

MovingMNIST in PyTorch

from torchvision.datasets import MovingMNIST
import matplotlib.animation as animation

all_data = MovingMNIST(
    root="data"
)

import matplotlib.pyplot as plt
from IPython.display import HTML

figure, axis = plt.subplots()

# ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ `ArtistAnimation()` ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
images = []
for image in all_data[0].squeeze():
    images.append([axis.imshow(image)])
ani = animation.ArtistAnimation(fig=figure, artists=images,
                                interval=100)
# ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ `ArtistAnimation()` ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

# ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ `FuncAnimation()` ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
# def animate(i):
#     axis.imshow(all_data[0].squeeze()[i])
#
# ani = animation.FuncAnimation(fig=figure, func=animate,
#                               frames=20, interval=100)
# ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ `FuncAnimation()` ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

# ani.save('result.gif') # Save the animation as a `.gif` file

plt.ioff() # Hide a useless image

# ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ Show animation ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
HTML(ani.to_jshtml()) # Animation operator
# HTML(ani.to_html5_video()) # Animation video
# ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ Show animation ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

# ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ Show animation ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
# plt.rcParams["animation.html"] = "jshtml" # Animation operator
# plt.rcParams["animation.html"] = "html5" # Animation video
# ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ Show animation ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
登录后复制

MovingMNIST in PyTorch

MovingMNIST in PyTorch

from torchvision.datasets import MovingMNIST
from ipywidgets import interact, IntSlider

all_data = MovingMNIST(
    root="data"
)

import matplotlib.pyplot as plt
from IPython.display import HTML

def func(i):
    plt.imshow(all_data[0].squeeze()[i])

interact(func, i=(0, 19, 1))
# interact(func, i=IntSlider(min=0, max=19, step=1, value=0))
# ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ Set the start value ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
plt.show()
登录后复制

MovingMNIST in PyTorch

MovingMNIST in PyTorch

以上是在 PyTorch 中移动 MNIST的详细内容。更多信息请关注PHP中文网其他相关文章!

来源:dev.to
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
作者最新文章
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板