使用 ClientAI 和 Ollama 构建本地 AI 任务规划器
在本教程中,我们将使用 ClientAI 和 Ollama 构建一个人工智能驱动的任务规划器。我们的计划员会将目标分解为可操作的任务,创建现实的时间表并管理资源 - 所有这些都在您自己的机器上运行。
我们的任务规划器将能够:
- 将目标分解为具体的、可操作的任务
- 通过错误处理创建现实的时间表
- 有效管理和分配资源
- 提供结构化、格式化的计划
有关 ClientAI 的文档,请参阅此处;有关 Github Repo,请参阅此处。
设置我们的环境
首先,为您的项目创建一个新目录:
mkdir local_task_planner cd local_task_planner
在 Ollama 支持下安装 ClientAI:
pip install clientai[ollama]
确保您的系统上安装了 Ollama。您可以从 Ollama 的网站获取。
创建我们的主要 Python 文件:
touch task_planner.py
让我们从核心导入开始:
from datetime import datetime, timedelta from typing import Dict, List import logging from clientai import ClientAI from clientai.agent import create_agent, tool from clientai.ollama import OllamaManager logger = logging.getLogger(__name__)
每个组件都起着至关重要的作用:
- 日期时间:帮助我们管理任务时间表和日程安排
- ClientAI:提供我们的人工智能框架
- OllamaManager: 管理我们本地的 AI 模型
- 用于类型提示和日志记录的各种实用模块
构建任务计划核心
首先,让我们创建用于管理 AI 交互的 TaskPlanner 类:
class TaskPlanner: """A local task planning system using Ollama.""" def __init__(self): """Initialize the task planner with Ollama.""" self.manager = OllamaManager() self.client = None self.planner = None def start(self): """Start the Ollama server and initialize the client.""" self.manager.start() self.client = ClientAI("ollama", host="http://localhost:11434") self.planner = create_agent( client=self.client, role="task planner", system_prompt="""You are a practical task planner. Break down goals into specific, actionable tasks with realistic time estimates and resource needs. Use the tools provided to validate timelines and format plans properly.""", model="llama3", step="think", tools=[validate_timeline, format_plan], tool_confidence=0.8, stream=True, )
这个课程是我们的基础。它管理 Ollama 服务器生命周期,创建和配置我们的 AI 客户端,并设置具有特定功能的规划代理。
创建我们的规划工具
现在让我们构建人工智能将使用的工具。首先,时间线验证器:
@tool(name="validate_timeline") def validate_timeline(tasks: Dict[str, int]) -> Dict[str, dict]: """ Validate time estimates and create a realistic timeline. Args: tasks: Dictionary of task names and estimated hours Returns: Dictionary with start dates and deadlines """ try: current_date = datetime.now() timeline = {} accumulated_hours = 0 for task, hours in tasks.items(): try: hours_int = int(float(str(hours))) if hours_int <= 0: logger.warning(f"Skipping task {task}: Invalid hours value {hours}") continue days_needed = hours_int / 6 start_date = current_date + timedelta(hours=accumulated_hours) end_date = start_date + timedelta(days=days_needed) timeline[task] = { "start": start_date.strftime("%Y-%m-%d"), "end": end_date.strftime("%Y-%m-%d"), "hours": hours_int, } accumulated_hours += hours_int except (ValueError, TypeError) as e: logger.warning(f"Skipping task {task}: Invalid hours value {hours} - {e}") continue return timeline except Exception as e: logger.error(f"Error validating timeline: {str(e)}") return {}
此验证器将时间估计转换为工作日,优雅地处理无效输入,创建现实的顺序调度并提供详细的调试日志记录。
接下来,让我们创建计划格式化程序:
@tool(name="format_plan") def format_plan( tasks: List[str], timeline: Dict[str, dict], resources: List[str] ) -> str: """ Format the plan in a clear, structured way. Args: tasks: List of tasks timeline: Timeline from validate_timeline resources: List of required resources Returns: Formatted plan as a string """ try: plan = "== Project Plan ==\n\n" plan += "Tasks and Timeline:\n" for i, task in enumerate(tasks, 1): if task in timeline: t = timeline[task] plan += f"\n{i}. {task}\n" plan += f" Start: {t['start']}\n" plan += f" End: {t['end']}\n" plan += f" Estimated Hours: {t['hours']}\n" plan += "\nRequired Resources:\n" for resource in resources: plan += f"- {resource}\n" return plan except Exception as e: logger.error(f"Error formatting plan: {str(e)}") return "Error: Unable to format plan"
在这里,我们希望通过正确的任务编号和有组织的时间线创建一致、可读的输出。
构建界面
让我们为我们的计划者创建一个用户友好的界面:
def get_plan(self, goal: str) -> str: """ Generate a plan for the given goal. Args: goal: The goal to plan for Returns: A formatted plan string """ if not self.planner: raise RuntimeError("Planner not initialized. Call start() first.") return self.planner.run(goal) def main(): planner = TaskPlanner() try: print("Task Planner (Local AI)") print("Enter your goal, and I'll create a practical, timeline-based plan.") print("Type 'quit' to exit.") planner.start() while True: print("\n" + "=" * 50 + "\n") goal = input("Enter your goal: ") if goal.lower() == "quit": break try: plan = planner.get_plan(goal) print("\nYour Plan:\n") for chunk in plan: print(chunk, end="", flush=True) except Exception as e: print(f"Error: {str(e)}") finally: planner.stop() if __name__ == "__main__": main()
我们的界面提供:
- 清晰的使用说明
- 通过流媒体实时生成计划
- 正确的错误处理
- 干净的关闭管理
用法示例
以下是运行计划程序时您将看到的内容:
Task Planner (Local AI) Enter your goal, and I'll create a practical, timeline-based plan. Type 'quit' to exit. ================================================== Enter your goal: Create a personal portfolio website Your Plan: == Project Plan == Tasks and Timeline: 1. Requirements Analysis and Planning Start: 2024-12-08 End: 2024-12-09 Estimated Hours: 6 2. Design and Wireframing Start: 2024-12-09 End: 2024-12-11 Estimated Hours: 12 3. Content Creation Start: 2024-12-11 End: 2024-12-12 Estimated Hours: 8 4. Development Start: 2024-12-12 End: 2024-12-15 Estimated Hours: 20 Required Resources: - Design software (e.g., Figma) - Text editor or IDE - Web hosting service - Version control system
未来的改进
为您自己的任务规划器考虑这些增强功能:
- 添加任务之间的依赖关系跟踪
- 包括资源成本计算
- 将计划保存到文件或项目管理工具
- 根据原计划跟踪进度
- 添加资源可用性验证
- 实现并行任务调度
- 添加对重复任务的支持
- 包括任务的优先级
要了解有关 ClientAI 的更多信息,请访问文档。
与我联系
如果您对本教程有任何疑问或想分享您对任务计划程序的改进,请随时联系:
- GitHub:igorbenav
- X/Twitter:@igorbenav
- 领英:伊戈尔
以上是使用 ClientAI 和 Ollama 构建本地 AI 任务规划器的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Linux终端中查看Python版本时遇到权限问题的解决方法当你在Linux终端中尝试查看Python的版本时,输入python...

使用FiddlerEverywhere进行中间人读取时如何避免被检测到当你使用FiddlerEverywhere...

在使用Python的pandas库时,如何在两个结构不同的DataFrame之间进行整列复制是一个常见的问题。假设我们有两个Dat...

如何在10小时内教计算机小白编程基础?如果你只有10个小时来教计算机小白一些编程知识,你会选择教些什么�...

Uvicorn是如何持续监听HTTP请求的?Uvicorn是一个基于ASGI的轻量级Web服务器,其核心功能之一便是监听HTTP请求并进�...

攻克Investing.com的反爬虫策略许多人尝试爬取Investing.com(https://cn.investing.com/news/latest-news)的新闻数据时,常常�...
