首页 > 后端开发 > Python教程 > [CVHSV 与 RGB:理解和利用 HSV 进行图像处理

[CVHSV 与 RGB:理解和利用 HSV 进行图像处理

Mary-Kate Olsen
发布: 2024-12-19 10:33:10
原创
267 人浏览过

在上一篇文章中,我们探索了在 OpenCV 中处理 RGB 图像的基础知识,包括绘图以及调整亮度和对比度。虽然 RGB 色彩空间非常适合计算机显示器,因为它以屏幕发出的光强度来表示颜色,但它与人类在自然世界中感知颜色的方式并不相符。这就是 HSV(色相、饱和度、明度)发挥作用的地方——一个旨在以更接近人类感知的方式表示颜色的颜色空间。
在这篇文章中,我们将深入研究 HSV,了解其组件,探索其应用程序,并学习一些增强图像的酷技巧。

什么是单纯疱疹病毒?

HSV 代表色相、饱和度和明度:

  • 色调 (H):这是指颜色的类型 - 红色、绿色、蓝色等。虽然传统上以圆形光谱 (0°–360°) 上的度数来测量,但在 OpenCV 中,色调缩放为 0 –179 适合 8 位整数。这是映射:
  • 0(或接近它)仍然代表红色。
  • 60–89 对应绿色。
  • 120–149 对应蓝色。
  • 140–179 环绕回红色,完成圆形光谱。
  • 饱和度 (S):这定义了颜色的强度或纯度:完全饱和的颜色不含灰色且充满活力,饱和度较低的颜色显得更加褪色。

  • 值 (V):通常称为亮度,它测量亮度或暗度。通过分离这些组件,HSV 使分析和操作图像变得更容易,特别是对于颜色检测或增强等任务。颜色。

为了更好地理解这一点,情节打击很好地展示了色彩空间中的值

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

在 OpenCV 中将图像转换为 HSV

使用 cv2.cvtColor() 函数在 OpenCV 中将图像转换为 HSV 非常简单。我们来看看:

import cv2
import matplotlib.pyplot as plt


image = cv2.imread('./test.png')
plt.figure(figsize=(10,10))
plt.subplot(1,2,1)
plt.imshow(image[:,:,::-1]) #plot as RGB 
plt.title("RGB View")
hsv= cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
plt.subplot(1,2,2)
plt.imshow(hsv)
plt.title("HSV View")
plt.tight_layout()
plt.show()

登录后复制
登录后复制

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

乍一看,HSV 情节可能看起来很奇怪——几乎像外星人。这是因为您的计算机尝试将 HSV 表示为 RGB 图像,即使 HSV 的组件(尤其是色调)并未直接映射到 RGB 值。例如:

  • 色调(H):以角度表示,在 OpenCV 中范围为 0 到 179(而不是像 RGB 通道那样为 0 到 255)。这会导致色调通道在基于 RGB 的绘图中主要显示为蓝色。

对于接下来的示例,我们不会使用个人资料图像,而是使用 Flux ai image gen 模型生成的较暗的图像。因为它提供了比个人资料图片更好的 HSV 用户案例,我们可以更好地看到它的效果

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

通过直方图了解 HSV

为了更好地理解 RGB 和 HSV 之间的差异,让我们绘制每个通道的直方图。代码如下:

import cv2
import matplotlib.pyplot as plt


image = cv2.imread('./test.png')
plt.figure(figsize=(10,10))
plt.subplot(1,2,1)
plt.imshow(image[:,:,::-1]) #plot as RGB 
plt.title("RGB View")
hsv= cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
plt.subplot(1,2,2)
plt.imshow(hsv)
plt.title("HSV View")
plt.tight_layout()
plt.show()

登录后复制
登录后复制

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

从直方图中,您可以看到 HSV 通道与 RGB 通道有何不同。请注意 HSV 中的色调通道,其值介于 0 到 179 之间,代表不同的颜色区域,而饱和度和值则处理强度和亮度。

可视化色相、饱和度和明度

现在,让我们将 HSV 图像分解为各个组成部分,以更好地理解每个通道代表的含义:

# Plot the histograms
plt.figure(figsize=(10, 6))

# RGB Histogram
plt.subplot(1, 2, 1)
for i, color in enumerate(['r', 'g', 'b']):
    plt.hist(image[:, :, i].ravel(), 256, [0, 256], color=color, histtype='step')
    plt.xlim([0, 256])
plt.title("RGB Histogram")

# HSV Histogram
plt.subplot(1, 2, 2)
for i, color in enumerate(['r', 'g', 'b']):
    plt.hist(hsv[:, :, i].ravel(), 256, [0, 256], color=color, histtype='step')
    plt.xlim([0, 256])
plt.title("HSV Histogram")
plt.show()

登录后复制

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

  • 色调:显示清晰的颜色区别,突出显示图像中的主色。
  • 饱和度:较亮的区域代表鲜艳的色彩,而较暗的区域表示更柔和的灰色色调。
  • 明度:突出亮度分布,光线充足的区域显得更亮。

HSV 治疗技巧

1. 亮度增强(值均衡)

对于光照不均匀的图像,均衡值通道可以使较暗的区域更加明显,同时为较亮的区域提供“发光”效果。

# Plot the individual HSV channels
plt.figure(figsize=(10, 6))
plt.subplot(1, 3, 1)
plt.imshow(hsv[:, :, 0], cmap='hsv')  # Hue
plt.title("Hue")
plt.subplot(1, 3, 2)
plt.imshow(hsv[:, :, 1], cmap='gray')  # Saturation
plt.title("Saturation")
plt.subplot(1, 3, 3)
plt.imshow(hsv[:, :, 2], cmap='gray')  # Value
plt.title("Value")
plt.tight_layout()
plt.show()
登录后复制

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

2.色彩增强(饱和度均衡)

增强饱和度通道使图像中的颜色更加清晰和充满活力。

equ = cv2.equalizeHist(hsv[:, :, 2])  # Equalize the Value channel
new_hsv = cv2.merge((hsv[:, :, 0], hsv[:, :, 1], equ))
new_image = cv2.cvtColor(new_hsv, cv2.COLOR_HSV2BGR)

# Display results
plt.figure(figsize=(10, 6))
plt.subplot(1, 2, 1)
plt.imshow(image)
plt.title("Original Image")
plt.subplot(1, 2, 2)
plt.imshow(new_image)
plt.title("Brightness Enhanced")
plt.tight_layout()
plt.show()
登录后复制

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

3. 滤色(隔离红色)

使用色调通道,我们可以隔离特定的颜色。例如,要提取红色调:

equ = cv2.equalizeHist(hsv[:, :, 1])  # Equalize the Saturation channel
new_hsv = cv2.merge((hsv[:, :, 0], equ, hsv[:, :, 2]))
new_image = cv2.cvtColor(new_hsv, cv2.COLOR_HSV2BGR)

# Display results
plt.figure(figsize=(10, 6))
plt.subplot(1, 2, 1)
plt.imshow(image)
plt.title("Original Image")
plt.subplot(1, 2, 2)
plt.imshow(new_image)
plt.title("Color Enhanced")
plt.tight_layout()
plt.show()

登录后复制

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

这项技术对于对象检测、颜色分割甚至艺术效果等任务非常有用。

结论

HSV 色彩空间提供了一种通用且直观的方法来分析和操作图像。通过分离颜色(色调)、强度(饱和度)和亮度(值),HSV 简化了颜色过滤、增强和分割等任务。 RGB 是显示器的理想选择,而 HSV 则为创意和分析图像处理提供了可能性。

您最喜欢的 HSV 技巧是什么?欢迎在下方分享您的想法,让我们一起探索这个充满活力的色彩世界!

此版本包含流畅的流程、详细的解释和一致的格式,以提高可读性和理解性。

以上是[CVHSV 与 RGB:理解和利用 HSV 进行图像处理的详细内容。更多信息请关注PHP中文网其他相关文章!

来源:dev.to
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
作者最新文章
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板