如何在 Python 中使用 Pandas GroupBy 计算分组统计数据?
使用 Pandas GroupBy 计算分组统计
简介
处理数据时,通常需要分析和比较不同组的统计数据。 Pandas 是一个用于数据操作的著名 Python 库,它提供了 GroupBy 功能来轻松执行这些操作。
获取分组行计数
获取每个组的行计数的最简单方法是通过.size() 方法。此方法返回包含分组计数的 Series:
df.groupby(['col1','col2']).size()
以表格格式检索计数(即,作为具有“计数”列的 DataFrame):
df.groupby(['col1', 'col2']).size().reset_index(name='counts')
计算多个分组统计数据
要计算多个统计数据,请使用 .agg() 方法和字典。键指定要计算的列,而值是所需聚合的列表(例如“平均值”、“中位数”和“计数”):
df.groupby(['col1', 'col2']).agg({ 'col3': ['mean', 'count'], 'col4': ['median', 'min', 'count'] })
自定义数据输出
为了更好地控制输出,可以加入单独的聚合:
counts = df.groupby(['col1', 'col2']).size().to_frame(name='counts') counts.join(gb.agg({'col3': 'mean'}).rename(columns={'col3': 'col3_mean'})) \ .join(gb.agg({'col4': 'median'}).rename(columns={'col4': 'col4_median'})) \ .join(gb.agg({'col4': 'min'}).rename(columns={'col4': 'col4_min'})) \ .reset_index()
这会生成一个更加结构化的 DataFrame未嵌套的列标签。
脚注
在提供的示例中,空值可能会导致用于不同计算的行计数出现差异。这强调了在解释分组统计数据时考虑空值的重要性。
以上是如何在 Python 中使用 Pandas GroupBy 计算分组统计数据?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。
