Pandas 的'groupby()”函数如何计算组内值的总和?
理解 Pandas 中的 GroupBy 聚合计算
在处理大型数据集时,pandas 提供了一个名为 groupby() 的强大函数来对数据进行分组特定列并对分组数据执行计算。在这种情况下,让我们探讨如何利用 groupby() 计算组内值的总和。
考虑以下数据框,其中我们有有关个人在多个日期购买水果的详细信息:
| Fruit | Date | Name | Number | |---|---|---|---| | Apples | 10/6/2016 | Bob | 7 | | Apples | 10/6/2016 | Bob | 8 | | Apples | 10/6/2016 | Mike | 9 | | Apples | 10/7/2016 | Steve | 10 | | Apples | 10/7/2016 | Bob | 1 | | Oranges | 10/7/2016 | Bob | 2 | | Oranges | 10/6/2016 | Tom | 15 | | Oranges | 10/6/2016 | Mike | 57 | | Oranges | 10/6/2016 | Bob | 65 | | Oranges | 10/7/2016 | Tony | 1 | | Grapes | 10/7/2016 | Bob | 1 | | Grapes | 10/7/2016 | Tom | 87 | | Grapes | 10/7/2016 | Bob | 22 | | Grapes | 10/7/2016 | Bob | 12 | | Grapes | 10/7/2016 | Tony | 15 |
目标:计算按名称分组的水果购买总和
我们的目标是计算每个人购买的水果总数,按水果(Fruit)和人名(Name)对数据进行分组。
解决方案:使用 GroupBy.sum()
为了实现这一点,我们使用 groupby() 函数对列进行分组:
result = df.groupby(['Fruit', 'Name']).sum()
应用于分组数据的 sum() 方法会自动聚合指定列中的值(在本例中,Number 表示购买的水果数量)。
输出:
代码的输出为我们提供了聚合值:
| | Number | |----------------|--------| | Fruit | Name | | Apples | Bob | 16 | | | Mike | 9 | | | Steve | 10 | | Grapes | Bob | 35 | | | Tom | 87 | | | Tony | 15 | | Oranges | Bob | 67 | | | Mike | 57 | | | Tom | 15 | | | Tony | 1 |
在这里,我们可以观察每个人购买的水果总数在每个水果类别中。例如,在“鲍勃”组中,购买的“苹果”总数为 16 个,购买的“葡萄”总数为 35 个。
以上是Pandas 的'groupby()”函数如何计算组内值的总和?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。
