在人工智能驱动的应用时代,大型语言模型(LLM)已成为解决复杂问题的需求,从生成自然语言到辅助决策过程。然而,这些模型日益复杂和不可预测,使得有效监控和理解其行为变得具有挑战性。这就是可观察性在 LLM 申请中变得至关重要的地方。
可观察性是通过分析系统的输出和指标来理解系统内部状态的实践。对于 LLM 应用程序,它确保模型按预期运行,提供对错误或偏差的洞察,显示成本消耗,并帮助优化现实场景的性能。
随着对法学硕士的依赖不断增加,对强大的工具来观察和调试其操作的需求也在增加。 LangSmith 是一款来自 LangChain 的强大产品,专为增强基于 LLM 的应用程序的可观察性而设计。 LangSmith 为开发人员提供了监控、评估和分析其 LLM 流程的工具,确保其 AI 解决方案在整个生命周期中的可靠性和性能。
本文探讨了可观察性在 LLM 应用程序中的重要性,以及 LangSmith 如何帮助开发人员更好地控制其 AI 工作流程,为构建更值得信赖、更高效的 LLM 驱动系统铺平道路。
完整文章在这里
以上是关于法学硕士 Observability 和 LangSmith 您需要了解的一切的详细内容。更多信息请关注PHP中文网其他相关文章!