第一条人工智能响应:
输出:感谢您伸出援手,.我很乐意为您提供帮助,但我想确保我完全理解您的需求。您能否提供有关您正在寻找的内容的更多详细信息?您分享的信息越多,我就越能提供帮助!我很乐意尽我所能地帮助你。您想进一步探索某个特定领域吗?您的意见将帮助我根据您的具体需求定制我的帮助。我完全致力于让您的体验尽可能顺利和愉快。
AI 响应,在编写自己的图表后:
输出:嗨!这是怎么回事?今天我能为您提供什么帮助?您告诉我的越多,我就越能提供帮助。你在想什么?我来这里是为了帮助您找到适合您的解决方案。请注意,我是一名人工智能助手,仍在学习入门知识。
非常神奇吧?
听起来几乎是人类的。周末我和 van Wilder 一起看了电影《Free Guy》,我意识到哇,我可能可以使用 @langchain/langgraph 中的 GraphState 来创建一个可以对自身执行迭代并编写自己的代码的 AI。
如果您现在还没有意识到这一点,Claude Sonnet 非常擅长 0 镜头编码,甚至更擅长多镜头编码。
使用库 npm:sentiment :
来自 README.md
Sentiment 是一个 Node.js 模块,它使用 AFINN-165 单词列表和表情符号情感排名对任意输入文本块执行情感分析。
我向图形状态添加了一个简单的命令,该命令对输出运行情感分析,并使用新版本改进代码以尝试获得更高的分数:
// update state and continue evolution return new Command({ update: { ...state, code: newCode, version: state.version + 1, analysis, previousSentimentDelta: currentSentimentDelta, type: "continue", output }, goto: "evolve" // Loop back to evolve });
我们用它可以使用的初始图形状态为语言图播种(如果您愿意,可以使用基础代码):
const initialWorkerCode = ` import { StateGraph, END } from "npm:@langchain/langgraph"; const workflow = new StateGraph({ channels: { input: "string", output: "string?" } }); // Initial basic response node workflow.addNode("respond", (state) => ({ ...state, output: "I understand your request and will try to help. Let me know if you need any clarification." })); workflow.setEntryPoint("respond"); workflow.addEdge("respond", END); const graph = workflow.compile(); export { graph }; `;
您可以看到这是一个非常基本的响应节点,附加了一条边。
我将当前代码设置为经过 10 次迭代,试图获得 10 或更高的情绪:
if (import.meta.main) { runEvolvingSystem(10, 10); }
每次都会运行分析:
Analysis: { metrics: { emotionalRange: 0.16483516483516483, vocabularyVariety: 0.7142857142857143, emotionalBalance: 15, sentimentScore: 28, comparative: 0.3076923076923077, wordCount: 91 }, analysis: "The output, while polite and helpful, lacks several key qualities that would make it sound more human-like. Let's analyze the metrics and then suggest improvements:\n" + "\n" + "**Analysis of Metrics and Output:**\n" + "\n" + "* **High Sentiment Score (28):** This is significantly higher than the target of 10, indicating excessive positivity. Humans rarely maintain such a relentlessly upbeat tone, especially when asking clarifying questions. It feels forced and insincere.\n" + "\n" + "* **Emotional Range (0.16):** This low score suggests a lack of emotional variation. The response is consistently positive, lacking nuances of expression. Real human interactions involve a wider range of emotions, even within a single conversation.\n" + "\n" + "* **Emotional Balance (15.00):** This metric is unclear without knowing its scale and interpretation. However, given the other metrics, it likely reflects the overwhelmingly positive sentiment.\n" + "\n" + "* **Vocabulary Variety (0.71):** This is relatively good, indicating a decent range of words. However, the phrasing is still somewhat formulaic.\n" + "\n" + "* **Comparative Score (0.3077):** This metric is also unclear without context.\n" + "\n" + "* **Word Count (91):** A bit lengthy for a simple clarifying request. Brevity is often more human-like in casual conversation.\n" + "\n" + "\n" + "**Ways to Make the Response More Human-like:**\n" + "\n" + `1. **Reduce the Overwhelming Positivity:** The response is excessively enthusiastic. A more natural approach would be to tone down the positive language. Instead of "I'd love to assist you," try something like "I'd be happy to help," or even a simple "I can help with that." Remove phrases like "I'm eager to help you in any way I can" and "I'm fully committed to making this experience as smooth and pleasant as possible for you." These are overly formal and lack genuine warmth.\n` + "\n" + '2. **Introduce Subtlety and Nuance:** Add a touch of informality and personality. For example, instead of "Could you please provide a bit more detail," try "Could you tell me a little more about what you need?" or "Can you give me some more information on that?"\n' + "\n" + "3. **Shorten the Response:** The length makes it feel robotic. Conciseness is key to human-like communication. Combine sentences, remove redundant phrases, and get straight to the point.\n" + "\n" + '4. **Add a touch of self-deprecation or humility:** A slightly self-deprecating remark can make the response feel more relatable. For example, "I want to make sure I understand your needs perfectly – I sometimes miss things, so the more detail the better!"\n' + "\n" + "5. **Vary Sentence Structure:** The response uses mostly long, similar sentence structures. Varying sentence length and structure will make it sound more natural.\n" + "\n" + "**Example of a More Human-like Response:**\n" + "\n" + `"Thanks for reaching out! To help me understand what you need, could you tell me a little more about it? The more detail you can give me, the better I can assist you. Let me know what you're looking for."\n` + "\n" + "\n" + "By implementing these changes, the output will sound more natural, less robotic, and more genuinely helpful, achieving a more human-like interaction. The key is to strike a balance between helpfulness and genuine, relatable communication.\n", rawSentiment: { score: 28, comparative: 0.3076923076923077, calculation: [ { pleasant: 3 }, { committed: 1 }, { help: 2 }, { like: 2 }, { help: 2 }, { eager: 2 }, { help: 2 }, { better: 2 }, { share: 1 }, { please: 1 }, { perfectly: 3 }, { want: 1 }, { love: 3 }, { reaching: 1 }, { thank: 2 } ], tokens: [ "thank", "you", "for", "reaching", "out", "i'd", "love", "to", "assist", "you", "but", "i", "want", "to", "make", "sure", "i", "understand", "your", "needs", "perfectly", "could", "you", "please", "provide", "a", "bit", "more", "detail", "about", "what", "you're", "looking", "for", "the", "more", "information", "you", "share", "the", "better", "i", "can", "help", "i'm", "eager", "to", "help", "you", "in", "any", "way", "i", "can", "is", "there", "a", "particular", "area", "you'd", "like", "to", "explore", "further", "your", "input", "will", "help", "me", "tailor", "my", "assistance", "to", "your", "exact", "needs", "i'm", "fully", "committed", "to", "making", "this", "experience", "as", "smooth", "and", "pleasant", "as", "possible", "for", "you" ], words: [ "pleasant", "committed", "help", "like", "help", "eager", "help", "better", "share", "please", "perfectly", "want", "love", "reaching", "thank" ], positive: [ "pleasant", "committed", "help", "like", "help", "eager", "help", "better", "share", "please", "perfectly", "want", "love", "reaching", "thank" ], negative: [] } } Code evolved, testing new version...
它使用此 Analysis 类在代码上得分更高。
经过 10 次迭代后,得分相当高:
Final Results: Latest version: 10 Final sentiment score: 9 Evolution patterns used: ["basic","responsive","interactive"]
最有趣的是它创建的图表:
import { StateGraph, END } from "npm:@langchain/langgraph"; const workflow = new StateGraph({ channels: { input: "string", output: "string?", sentiment: "number", context: "object" } }); const positiveWords = ["good", "nice", "helpful", "appreciate", "thanks", "pleased", "glad", "great", "happy", "excellent", "wonderful", "amazing", "fantastic"]; const negativeWords = ["issue", "problem", "difficult", "confused", "frustrated", "unhappy"]; workflow.addNode("analyzeInput", (state) => { const input = state.input.toLowerCase(); let sentiment = input.split(" ").reduce((score, word) => { if (positiveWords.includes(word)) score += 1; if (negativeWords.includes(word)) score -= 1; return score; }, 0); sentiment = Math.min(Math.max(sentiment, -5), 5); return { ...state, sentiment, context: { needsClarification: sentiment === 0, isPositive: sentiment > 0, isNegative: sentiment < 0, topic: detectTopic(input), userName: extractUserName(input) } }; }); function detectTopic(input) { if (input.includes("technical") || input.includes("error")) return "technical"; if (input.includes("product") || input.includes("service")) return "product"; if (input.includes("billing") || input.includes("payment")) return "billing"; return "general"; } function extractUserName(input) { const nameMatch = input.match(/(?:my name is|i'm|i am) (\w+)/i); return nameMatch ? nameMatch[1] : ""; } workflow.addNode("generateResponse", (state) => { let response = ""; const userName = state.context.userName ? `${state.context.userName}` : "there"; if (state.context.isPositive) { response = `Hey ${userName}! Glad to hear things are going well. What can I do to make your day even better?`; } else if (state.context.isNegative) { response = `Hi ${userName}. I hear you're facing some challenges. Let's see if we can turn things around. What's on your mind?`; } else { response = `Hi ${userName}! What's up? How can I help you today?`; } return { ...state, output: response }; }); workflow.addNode("interactiveFollowUp", (state) => { let followUp = ""; switch (state.context.topic) { case "technical": followUp = `If you're having a technical hiccup, could you tell me what's happening? Any error messages or weird behavior?`; break; case "product": followUp = `Curious about our products? What features are you most interested in?`; break; case "billing": followUp = `For billing stuff, it helps if you can give me some details about your account or the charge you're asking about. Don't worry, I'll keep it confidential.`; break; default: followUp = `The more you can tell me, the better I can help. What's on your mind?`; } return { ...state, output: state.output + " " + followUp }; }); workflow.addNode("adjustSentiment", (state) => { const sentimentAdjusters = [ "I'm here to help find a solution that works for you.", "Thanks for your patience as we figure this out.", "Your input really helps me understand the situation better.", "Let's work together to find a great outcome for you." ]; const adjuster = sentimentAdjusters[Math.floor(Math.random() * sentimentAdjusters.length)]; return { ...state, output: state.output + " " + adjuster }; }); workflow.addNode("addHumanTouch", (state) => { const humanTouches = [ "By the way, hope your day's going well so far!", "Just a heads up, I'm an AI assistant still learning the ropes.", "Feel free to ask me to clarify if I say anything confusing.", "I appreciate your understanding as we work through this." ]; const touch = humanTouches[Math.floor(Math.random() * humanTouches.length)]; return { ...state, output: state.output + " " + touch }; }); workflow.setEntryPoint("analyzeInput"); workflow.addEdge("analyzeInput", "generateResponse"); workflow.addEdge("generateResponse", "interactiveFollowUp"); workflow.addEdge("interactiveFollowUp", "adjustSentiment"); workflow.addEdge("adjustSentiment", "addHumanTouch"); workflow.addEdge("addHumanTouch", END); const graph = workflow.compile(); export { graph };
我看到它编写的这段代码,立即想到了以下陷阱:
突发的复杂性:
这是指简单组件交互产生的复杂性,在本例中是法学硕士的算法和它所训练的庞大数据集。 LLM 可以生成的代码虽然功能强大,但表现出人类难以完全理解的复杂模式和依赖关系。
因此,如果我们可以稍微调整一下,并让它编写更干净、更简单的代码,我们可能就走在正确的轨道上。
无论如何,这只是一个实验,因为我想使用 langgraphs 新的命令功能。
请在评论中告诉我你的想法。
以上是自写 Lang 图状态的详细内容。更多信息请关注PHP中文网其他相关文章!