Pandas 中的 Loc 与 Iloc:我什么时候应该使用它们进行切片?
Pandas 中的 Loc 与 Iloc 切片
Loc 和 iloc 是 Pandas 中两种常用的切片方法,它们提供了选择行和切片的灵活性。 DataFrame 中的列。然而,理解它们的细微差别可能会令人困惑。
主要区别:标签与位置
loc 和 iloc 之间的主要区别在于它们使用的索引类型:
- Loc: 运行于标签,特别是索引或列标签中的实际值。
- Iloc: 在整数位置上操作,表示行或列的位置中的列DataFrame。
示例:
考虑具有非单调整数的 DataFrame index:
df = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9] }, index=[0, 2, 4])
Loc:
- df.loc[0] 访问索引标签为 0 的行,无论其位置如何。
- df.loc[0:1] 检索索引标签为 0 的行并且1.
Iloc:
- df.iloc[0] 检索索引位置 0 处的行,无论其索引标签如何。
- df.iloc[0:1] 仅访问第一行,因为它将索引位置指定为整数。
使用上的主要差异:
Feature | Loc | Iloc |
---|---|---|
Indexing | Labels | Integer locations |
Slicing | Inclusive (by default) | Exclusive (by default) |
Out-of-bounds behavior | KeyError | IndexError |
Negative indexing | Supported | Supported for final row only |
Boolean masking | NotImplementedError | Supports boolean mask |
Callable indexing | Function applied to index | Function applied to row or column |
何时使用 Loc 与 Iloc:
- 当你需要基于以下内容建立索引时使用loc标签,例如特定名称或类别。
- 优先选择 iloc 用于基于整数的索引,特别是对于具有明确起点和终点的切片操作。
- 避免 iloc 用于布尔屏蔽操作或基于逻辑条件的索引。
以上是Pandas 中的 Loc 与 Iloc:我什么时候应该使用它们进行切片?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优
