预测性维护飞机发动机系统旨在利用飞机发动机的实时传感器数据来预测何时需要维护,从而最大限度地减少计划外停机时间并优化维护计划。本文档详细概述了系统的部署过程,涵盖全栈架构、Docker 设置以及使用 Docker 和 Docker Compose 部署应用程序的步骤。
该系统由两个关键组件组成:
后端执行根据历史数据和实时传感器输入预测维护需求的关键任务。前端以用户友好的格式显示这些信息,使操作员能够及时采取行动并提高操作效率。
后端是使用 Flask 实现的 RESTful API,旨在:
使用 Dash 构建的前端,其目的是:
为了简化部署并确保应用程序在不同环境中一致运行,前端和后端都使用 Docker 进行容器化。 Docker Compose 用于定义和管理多容器设置。
docker-compose.yml 文件协调前端和后端服务的部署。它定义了如何构建和链接容器,以及它们如何通过自定义网络相互通信。下面是定义服务的 docker-compose.yml 文件示例:
version: '3.8' services: backend: build: context: . dockerfile: backend/Dockerfile ports: - "5000:5000" volumes: - ./data:/app/data networks: - app-network frontend: build: context: . dockerfile: frontend/Dockerfile ports: - "8050:8050" depends_on: - backend networks: - app-network networks: app-network: driver: bridge
关键要素:
此 Dockerfile 为运行 Flask API 的后端服务构建容器。它包括安装 Python 依赖项以及设置运行 Flask 应用程序所需的环境变量。
FROM python:3.9-slim WORKDIR /app COPY backend/requirements.txt /app/ RUN pip install --no-cache-dir -r requirements.txt COPY backend/ /app/ EXPOSE 5000 ENV FLASK_APP=app.py ENV FLASK_RUN_HOST=0.0.0.0 CMD ["flask", "run"]
前端服务使用类似的 Dockerfile 进行容器化。此文件设置 Dash 应用程序并将其公开在端口 8050 上。
FROM python:3.9-slim WORKDIR /app COPY frontend/requirements.txt /app/ RUN pip install --no-cache-dir -r requirements.txt COPY frontend/ /app/ EXPOSE 8050 CMD ["python", "app.py"]
关键要素:
部署应用程序之前,请确保您的计算机上安装了以下软件:
git clone <repository_url> cd <project_directory>
docker-compose up --build
访问应用程序:
容器运行后,您可以访问以下服务:
停止服务:
完成后,您可以通过按 Ctrl C 或运行以下命令来停止服务:
version: '3.8' services: backend: build: context: . dockerfile: backend/Dockerfile ports: - "5000:5000" volumes: - ./data:/app/data networks: - app-network frontend: build: context: . dockerfile: frontend/Dockerfile ports: - "8050:8050" depends_on: - backend networks: - app-network networks: app-network: driver: bridge
虽然 Docker 提供了一致的开发和测试环境,但在生产环境中部署系统还有其他注意事项:
Docker Compose 适合本地开发和测试,但对于生产部署,您可能需要使用 Kubernetes 等编排工具来处理扩展和资源管理。 Kubernetes 可以根据流量需求自动伸缩前后端服务,保证高可用和容错。
为了确保系统在生产中顺利运行,集成监控工具(如Prometheus)和日志系统(如ELK堆栈(Elasticsearch、Logstash和Kibana))。这些工具将允许您跟踪系统性能、实时检测问题并有效排除故障。
随着新的传感器数据可用,部署在后端的预测维护模型可能需要定期更新。重要的是:
确保前端和后端之间的通信安全:
对于自动化部署,请使用 GitHub Actions、Jenkins 或 GitLab CI 等工具集成 CI/CD 管道。当更改推送到存储库时,此管道可以自动构建、测试和部署应用程序的新版本。
预测性维护飞机发动机系统提供了实时监控和预测维护需求的全面解决方案。通过结合用于后端 API 的 Flask、用于交互式可视化的 Dash 以及用于容器化的 Docker,该系统提供了一个可靠、可扩展的解决方案,可以在本地部署以及生产环境中。
按照本文档中概述的步骤,您可以轻松地将应用程序部署在本地计算机上或为生产环境做好准备。通过扩展、监控和持续部署等进一步增强,该解决方案可以作为优化飞机发动机维护操作的关键工具。
以上是预测性维护飞机发动机系统的部署的详细内容。更多信息请关注PHP中文网其他相关文章!