作为一名 AI 开发人员,我经常发现自己在寻找使复杂的大型语言模型 (LLM) 交互更易于管理的方法。 LangChain 引起了我的注意,不仅因为它在人工智能开发社区中越来越受欢迎,还因为它解决常见的 LLM 集成挑战的实用方法。该框架将复杂的法学硕士操作转变为简化的工作流程的声誉引起了我的兴趣,并对其进行了测试。我决定构建一个文章生成系统,将 LangChain 的功能与 Llama3 模型结合起来,创建一个具有实际应用的工具。
LangChain 通过提供结构化、直观的方法来处理复杂操作,改变了我们与法学硕士互动的方式。将其视为精心设计的开发套件,每个组件都有特定的用途。该框架提供了一个干净的界面,从开发人员的角度来看,感觉很自然,而不是兼顾原始 API 调用和手动管理提示。这不仅仅是为了简化流程,而是为了使 LLM 应用程序更加可靠和可维护。
LangChain 的核心是使用链,即连接在一起的操作序列来创建更复杂的行为。这些链执行从格式化提示到处理模型响应的所有操作。虽然该框架包括用于管理提示和维护交互上下文的复杂系统,但我将主要关注我们的文章生成器的链和提示方面。
对于这个项目,我想构建一些实用的系统,可以根据主题、长度、语气和目标受众等特定参数生成定制文章。通过 Ollama 访问的 Llama3 模型为这项任务提供了性能和灵活性的适当平衡。
设置很简单:
pip install langchain langchain-ollama requests
ollama serve
ollama pull llama3
使用文章生成器时,Ollama 服务器必须在其终端中运行。如果关闭,生成器将无法连接到模型。
让我们来分解一下系统各个部分的工作原理:
这个简单的检查有助于通过尽早发现连接问题来避免运行时错误。这是检查 Ollama 服务器连接的可靠方法:
pip install langchain langchain-ollama requests
模型设置对于在我们生成的内容中获得适当的平衡至关重要:
ollama serve
这些参数代表了我在测试文章生成的各种组合后发现的最佳点。
温度 (0.7): 控制输出的随机性。较低的值(如 0.3)将使文本更可预测,而较高的值(如 0.9)将使其更具创意。 0.7 是一个很好的平衡。
Top_p (0.9): 此参数也称为核心采样,告诉模型要考虑多少个单词选项。在 0.9 时,它会考虑足够的选项来保持文本的趣味性,同时保持对主题的关注。
num_ctx(4096): 上下文窗口大小,或者模型一次可以处理多少文本。这为输入和大量文章输出提供了足够的空间,因为它可以处理大约 3000-3500 个单词。
提示模板是我们定义模型所需内容的地方:
ollama pull llama3
浪链最优雅的特点之一就是其简单的链组成:
def check_ollama_connection(): """ Check if Ollama server is running """ try: requests.get('http://localhost:11434/api/tags') return True except requests.exceptions.ConnectionError: return False
这一行创建了一个完整的生成管道,用于处理提示格式化、模型交互和响应处理。
为了使该工具用户友好,我实现了一个命令行界面:
llm = OllamaLLM( model="llama3", temperature=0.7, # Balances creativity and consistency top_p=0.9, # Helps with text diversity num_ctx=4096 # Sets the context window )
生成器的使用非常简单:运行代码并传递参数。
article_template = """ You are a professional content writer tasked with creating a comprehensive article. Topic: {topic} Writing Requirements: 1. Length: Approximately {word_count} words 2. Style: {tone} tone 3. Target Audience: {audience} 4. Format: Plain text without any markdown notation 5. Additional Details/Requirements: {extra_details} Content Structure Guidelines: - Start with an engaging introduction that hooks the reader - Organize content into clear sections with descriptive headings (not numbered) - Include relevant examples, statistics, or case studies when appropriate - Provide practical insights and actionable takeaways - End with a compelling conclusion that summarizes key points - Ensure smooth transitions between paragraphs and sections Writing Style Guidelines: - Use clear, concise language appropriate for the target audience - Avoid jargon unless necessary for the target audience - Incorporate relevant examples and real-world applications - Maintain an engaging and natural flow throughout the article - Use active voice predominantly - Include specific details and evidence to support main points - Ensure proper paragraph breaks for readability Additional Notes: - Do not use any markdown formatting - Keep paragraphs concise and focused - Use proper spacing between sections - If technical terms are used, provide brief explanations - Include a brief overview of what will be covered at the start Please write the article now: """
生成的文章:
chain = prompt | llm
def parse_arguments(): """ Parse command line arguments """ parser = argparse.ArgumentParser(description='Generate an article using AI') parser.add_argument('--topic', type=str, required=True, help='The topic of the article') parser.add_argument('--word-count', type=int, default=800, help='Target word count (default: 800)') parser.add_argument('--tone', type=str, default='professional', choices=['professional', 'casual', 'academic', 'informative', 'technical'], help='Writing tone (default: professional)') parser.add_argument('--audience', type=str, default='general', help='Target audience (default: general)') parser.add_argument('--extra-details', type=str, default='', help='Additional requirements or details for the article') return parser.parse_args()
生成的文章:
python main.py \ --topic "Benefits of playing board games with friends" \ --word-count 200 \ --tone casual \ --audience "Board games lovers" \ --extra-details "Avoid markdown notation"
通过这个项目,我发现了关于使用 LangChain 的几个重要见解:
构建这篇文章生成器展示了LangChain在AI开发方面的实用价值。它可以处理法学硕士交互的复杂性,同时让开发人员可以自由地专注于构建有用的功能。该框架在抽象和控制之间取得了平衡,使创建可靠的人工智能应用程序变得更加容易。
对于该领域的亲爱的同事或单独的爱好者,我相信LangChain提供了开发所需的所有必要意义,而最好的部分是:它不是与灵活性的权衡。考虑到人工智能工具领域正在呈指数级增长,像LangChain这样的框架对于构建实用的、生产就绪的应用程序将变得更有价值。
浪链鹦鹉和链条的标志背后蕴藏着巧妙的寓意。鹦鹉指的是法学硕士有时被称为“随机鹦鹉”,因为他们重复和改造人类语言。链部分是一个有趣的参考,说明框架如何帮助将语言模型“鹦鹉”“链接”到有用的应用程序中。
以上是使用 LangChain 和 Llama 构建文章生成器人工智能开发者之旅的详细内容。更多信息请关注PHP中文网其他相关文章!