首页 > 后端开发 > Python教程 > PyTorch 中的 pow

PyTorch 中的 pow

Mary-Kate Olsen
发布: 2025-01-01 12:33:10
原创
312 人浏览过

pow in PyTorch

请我喝杯咖啡☕

*备忘录:

  • 我的帖子解释了 square()。
  • 我的帖子解释了 float_power()。
  • 我的帖子解释了ab​​s()和sqrt()。
  • 我的帖子解释了 gcd() 和 lcm()。
  • 我的帖子解释了trace()、reciprocal() 和rsqrt()。

pow() 可以从零个或多个元素的 0D 或多个 D 张量中的两个或零个或多个元素的 0D 或多个 D 张量和标量中获得零次或多次幂的 0D 或多个 D 张量,如图所示下图:

*备忘录:

  • pow() 可以与 torch 或张量一起使用。
  • 第一个参数(输入)带有 torch(必需类型:int、float 或complex 的张量或标量)或使用张量(必需类型:int、float 或complex 的张量)。 *torch 必须使用没有输入的标量=。
  • 带有 torch 的第二个参数或带有张量的第一个参数是指数(必需类型:张量或整数、浮点数或复数的标量)。 *不能使用负标量。
  • torch 存在 out 参数(可选-默认:无-类型:张量): *备注:
    • 必须使用 out=。
    • 我的帖子解释了论点。
  • 不能使用标量(输入或张量)和标量(指数)的组合。
  • 张量(输入(bool)或张量(bool))和标量(指数(bool))的组合有效。
import torch

tensor1 = torch.tensor(-3)
tensor2 = torch.tensor([-4, -3, -2, -1, 0, 1, 2, 3])

torch.pow(input=tensor1, exponent=tensor2)
tensor1.pow(exponent=tensor2)
# tensor([0, 0, 0, 0, 1, -3, 9, -27])

torch.pow(-3, exponent=tensor2)
# tensor([0, 0, 0, 0, 1, -3, 9, -27])

torch.pow(input=tensor1, exponent=3)
# tensor(-27)

tensor1 = torch.tensor([-3, 1, -2, 3, 5, -5, 0, -4])
tensor2 = torch.tensor([-4, -3, -2, -1, 0, 1, 2, 3])

torch.pow(input=tensor1, exponent=tensor2)
# tensor([0, 1, 0, 0, 1, -5, 0, -64])

torch.pow(-3, exponent=tensor2)
# tensor([0, 0, 0, 0, 1, -3, 9, -27])

torch.pow(input=tensor1, exponent=3)
# tensor([-27, 1, -8, 27, 125, -125, 0, -64])

tensor1 = torch.tensor([[-3, 1, -2, 3], [5, -5, 0, -4]])
tensor2 = torch.tensor([0, 1, 2, 3])

torch.pow(input=tensor1, exponent=tensor2)
# tensor([[1, 1, 4, 27], [1, -5, 0, -64]])

torch.pow(-3, exponent=tensor2)
# tensor([1, -3, 9, -27])

torch.pow(input=tensor1, exponent=3)
# tensor([[-27, 1, -8, 27], [125, -125, 0, -64]])

tensor1 = torch.tensor([[[-3, 1], [-2, 3]],
                        [[5, -5], [0, -4]]])
tensor2 = torch.tensor([2, 3])

torch.pow(input=tensor1, exponent=tensor2)
# tensor([[[9, 1], [4, 27]],
#         [[25, -125], [0, -64]]])

torch.pow(-3, exponent=tensor2)
# tensor([9, -27])

torch.pow(input=tensor1, exponent=3)
# tensor([[[-27, 1], [-8, 27]],
#         [[125, -125], [0, -64]]])

tensor1 = torch.tensor([[[-3., 1.], [-2., 3.]],
                        [[5., -5.], [0., -4.]]])
tensor2 = torch.tensor([2., 3.])

torch.pow(input=tensor1, exponent=tensor2)
# tensor([[[9., 1.], [4., 27.]],
#         [[25., -125.], [0., -64.]]])

torch.pow(-3., exponent=tensor2)
# tensor([9., -27.])

torch.pow(input=tensor1, exponent=3.)
# tensor([[[-27., 1.], [-8., 27.]],
#         [[125., -125.], [0., -64.]]])

tensor1 = torch.tensor([[[-3.+0.j, 1.+0.j], [-2.+0.j, 3.+0.j]],
                        [[5.+0.j, -5.+0.j], [0.+0.j, -4.+0.j]]])
tensor2 = torch.tensor([2.+0.j, 3.+0.j])

torch.pow(input=tensor1, exponent=tensor2)
# tensor([[[9.0000+1.5736e-06j, 1.0000+0.0000e+00j],
#          [4.0000+6.9938e-07j, 27.0000+0.0000e+00j]],
#         [[25.0000+0.0000e+00j, -125.0000-2.9812e-06j],
#          [0.0000-0.0000e+00j, -64.0000-1.5264e-06j]]])

torch.pow(-3.+0.j, exponent=tensor2)
# tensor([9.0000+1.5736e-06j, -27.0000-6.4394e-07j])

torch.pow(input=tensor1, exponent=3.+0.j)
# tensor([[[-27.+0.j, 1.+0.j],
#          [-8.+0.j, 27.+0.j]],
#         [[125.+0.j, -125.+0.j],
#          [0.+0.j, -64.+0.j]]])

my_tensor = torch.tensor([[[True, False], [True, False]],
                          [[False, True], [False, True]]])
torch.pow(input=my_tensor, exponent=True)
# tensor([[[True, False], [True, False]],
#         [[False, True], [False, True]]])
登录后复制

以上是PyTorch 中的 pow的详细内容。更多信息请关注PHP中文网其他相关文章!

来源:dev.to
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
作者最新文章
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板