PyTorch 中的 linspace
请我喝杯咖啡☕
*备忘录:
- 我的帖子解释了 arange()。
- 我的帖子解释了 logspace()。
linspace() 可以创建零个或多个在 start 和 end 之间均匀间隔的整数、浮点数或复数的一维张量(start
*备忘录:
- linspace() 可以与 torch 一起使用,但不能与张量一起使用。
- torch 的第一个参数是 start(必需类型:int、float、complex 或 bool)。 *int、float、complex 或 bool 的 0D 张量也适用。
- torch 的第二个参数是 end(必需类型:int、float、complex 或 bool)。 *int、float、complex 或 bool 的 0D 张量也适用。
- torch的第三个参数是steps(Required-Type:int):
*备注:
- 必须大于或等于0。
- int 的 0D 张量也适用。
- torch 有 dtype 参数(可选-默认:无类型:dtype):
*备注:
- 如果为None,则从start、end或step推断,然后对于浮点数,使用get_default_dtype()。 *我的帖子解释了 get_default_dtype() 和 set_default_dtype()。
- 设置整数类型的开始和结束不足以创建整数类型的一维张量,因此必须设置带有 dtype 的整数类型。
- 必须使用 dtype=。
- 我的帖子解释了 dtype 参数。
- torch 有设备参数(可选-默认:无-类型:str、int 或 device()):
*备注:
- 如果为 None,则使用 get_default_device()。 *我的帖子解释了 get_default_device() 和 set_default_device()。
- 必须使用 device=。
- 我的帖子解释了设备参数。
- torch 有 require_grad 参数(可选-默认:False-Type:bool):
*备注:
- require_grad=必须使用。
- 我的帖子解释了 require_grad 参数。
- torch 存在 out 参数(可选-默认:无-类型:张量):
*备注:
- 必须使用 out=。
- 我的帖子解释了论点。
import torch torch.linspace(start=10, end=20, steps=0) torch.linspace(start=20, end=10, steps=0) # tensor([]) torch.linspace(start=10., end=20., steps=1) tensor([10.]) torch.linspace(start=20, end=10, steps=1) # tensor([20.]) torch.linspace(start=10., end=20., steps=2) # tensor([10., 20.]) torch.linspace(start=20, end=10, steps=2) # tensor([20., 10.]) torch.linspace(start=10., end=20., steps=3) # tensor([10., 15., 20.]) torch.linspace(start=20, end=10, steps=3) # tensor([20., 15., 10.]) torch.linspace(start=10., end=20., steps=4) # tensor([10.0000, 13.3333, 16.6667, 20.0000]) torch.linspace(start=20., end=10., steps=4) # tensor([20.0000, 16.6667, 13.3333, 10.0000]) torch.linspace(start=10, end=20, steps=4, dtype=torch.int64) torch.linspace(start=torch.tensor(10), end=torch.tensor(20), steps=torch.tensor(4), dtype=torch.int64) # tensor([10.0000, 13.3333, 16.6667, 20.0000]) torch.linspace(start=10.+6.j, end=20.+3.j, steps=4) torch.linspace(start=torch.tensor(10.+6.j), end=torch.tensor(20.+3.j), steps=torch.tensor(4)) # tensor([10.0000+6.j, 13.3333+5.j, 16.6667+4.j, 20.0000+3.j]) torch.linspace(start=False, end=True, steps=4) torch.linspace(start=torch.tensor(True), end=torch.tensor(False), steps=torch.tensor(4)) # tensor([0.0000, 0.3333, 0.6667, 1.0000]) torch.linspace(start=10, end=20, steps=4, dtype=torch.int64) torch.linspace(start=torch.tensor(10), end=torch.tensor(20), steps=torch.tensor(4), dtype=torch.int64) # tensor([10.0000, 13.3333, 16.6667, 20.0000])
以上是PyTorch 中的 linspace的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优
