在这个 Python 项目中,我们将创建一个简单的 AR 绘图应用程序。使用网络摄像头和手势,您可以在屏幕上虚拟绘图、自定义画笔,甚至保存您的创作!
首先,创建一个新文件夹并使用以下命令初始化新的虚拟环境:
python -m venv venv
./venv/Scripts/activate
接下来使用 pip 或您选择的安装程序安装所需的库:
pip install mediapipe
pip install opencv-python
您在 python 上安装最新版本的 mediapipe 时可能会遇到问题。当我写这篇博客时,我使用的是 python 3.11.2。确保使用 python 上的兼容版本。
第一步是设置网络摄像头并显示视频源。我们将使用 OpenCV 的 VideoCapture 来访问相机并连续显示帧。
import cv2 # The argument '0' specifies the default camera (usually the built-in webcam). cap = cv2.VideoCapture(0) # Start an infinite loop to continuously capture video frames from the webcam while True: # Read a single frame from the webcam # `ret` is a boolean indicating success; `frame` is the captured frame. ret, frame = cap.read() # Check if the frame was successfully captured # If not, break the loop and stop the video capture process. if not ret: break # Flip the frame horizontally (like a mirror image) frame = cv2.flip(frame, 1) # Display the current frame in a window named 'Webcam Feed' cv2.imshow('Webcam Feed', frame) # Wait for a key press for 1 millisecond # If the 'q' key is pressed, break the loop to stop the video feed. if cv2.waitKey(1) & 0xFF == ord('q'): break # Release the webcam resource to make it available for other programs cap.release() # Close all OpenCV-created windows cv2.destroyAllWindows()
你知道吗?
在 OpenCV 中使用 cv2.waitKey() 时,返回的密钥代码可能包含额外的位,具体取决于平台。为了确保正确检测按键,您可以使用 0xFF 屏蔽结果以隔离低 8 位(实际 ASCII 值)。如果没有这个,您的关键比较可能会在某些系统上失败 - 因此请始终使用 & 0xFF 以获得一致的行为!
使用 Mediapipe 的手解决方案,我们将检测手并提取关键标志的位置,例如食指和中指。
import cv2 import mediapipe as mp # Initialize the MediaPipe Hands module mp_hands = mp.solutions.hands # Load the hand-tracking solution from MediaPipe hands = mp_hands.Hands( min_detection_confidence=0.9, min_tracking_confidence=0.9 ) cap = cv2.VideoCapture(0) while True: ret, frame = cap.read() if not ret: break # Flip the frame horizontally to create a mirror effect frame = cv2.flip(frame, 1) # Convert the frame from BGR (OpenCV default) to RGB (MediaPipe requirement) frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # Process the RGB frame to detect and track hands result = hands.process(frame_rgb) # If hands are detected in the frame if result.multi_hand_landmarks: # Iterate through all detected hands for hand_landmarks in result.multi_hand_landmarks: # Get the frame dimensions (height and width) h, w, _ = frame.shape # Calculate the pixel coordinates of the tip of the index finger cx, cy = int(hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_TIP].x * w), \ int(hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_TIP].y * h) # Calculate the pixel coordinates of the tip of the middle finger mx, my = int(hand_landmarks.landmark[mp_hands.HandLandmark.MIDDLE_FINGER_TIP].x * w), \ int(hand_landmarks.landmark[mp_hands.HandLandmark.MIDDLE_FINGER_TIP].y * h) # Draw a circle at the index finger tip on the original frame cv2.circle(frame, (cx, cy), 10, (0, 255, 0), -1) # Green circle with radius 10 # Display the processed frame in a window named 'Webcam Feed' cv2.imshow('Webcam Feed', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break # Exit the loop if 'q' is pressed # Release the webcam resources for other programs cap.release() cv2.destroyAllWindows()
我们将跟踪食指,并仅当食指和中指分开阈值距离时才允许绘图。
我们将维护一个食指坐标列表,以在原始帧上进行绘制,并且每次中指足够靠近时,我们都会将 None 附加到该坐标数组中,以指示损坏。
import cv2 import mediapipe as mp import math # Initialize the MediaPipe Hands module mp_hands = mp.solutions.hands hands = mp_hands.Hands( min_detection_confidence=0.9, min_tracking_confidence=0.9 ) # Variables to store drawing points and reset state draw_points = [] # A list to store points where lines should be drawn reset_drawing = False # Flag to indicate when the drawing should reset # Brush settings brush_color = (0, 0, 255) brush_size = 5 cap = cv2.VideoCapture(0) while True: ret, frame = cap.read() if not ret: break frame = cv2.flip(frame, 1) frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) result = hands.process(frame_rgb) # If hands are detected if result.multi_hand_landmarks: for hand_landmarks in result.multi_hand_landmarks: h, w, _ = frame.shape # Get the frame dimensions (height and width) # Get the coordinates of the index finger tip cx, cy = int(hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_TIP].x * w), \ int(hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_TIP].y * h) # Get the coordinates of the middle finger tip mx, my = int(hand_landmarks.landmark[mp_hands.HandLandmark.MIDDLE_FINGER_TIP].x * w), \ int(hand_landmarks.landmark[mp_hands.HandLandmark.MIDDLE_FINGER_TIP].y * h) # Calculate the distance between the index and middle finger tips distance = math.sqrt((mx - cx) ** 2 + (my - cy) ** 2) # Threshold distance to determine if the fingers are close (used to reset drawing) threshold = 40 # If the fingers are far apart if distance > threshold: if reset_drawing: # Check if the drawing was previously reset draw_points.append(None) # None means no line reset_drawing = False draw_points.append((cx, cy)) # Add the current point to the list for drawing else: # If the fingers are close together set the flag to reset drawing reset_drawing = True # # Draw the lines between points in the `draw_points` list for i in range(1, len(draw_points)): if draw_points[i - 1] and draw_points[i]: # Only draw if both points are valid cv2.line(frame, draw_points[i - 1], draw_points[i], brush_color, brush_size) cv2.imshow('Webcam Feed', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break # Release the webcam and close all OpenCV windows cap.release() cv2.destroyAllWindows()
以上是初学者 Python 项目:使用 OpenCV 和 Mediapipe 构建增强现实绘图应用程序的详细内容。更多信息请关注PHP中文网其他相关文章!