首页 后端开发 Python教程 如何为使用 watsonx 的应用程序简单设置所有'采样参数”或'生成参数”?

如何为使用 watsonx 的应用程序简单设置所有'采样参数”或'生成参数”?

Jan 04, 2025 am 09:53 AM

How to set simply all “sampling parameters” or “generation parameters” for applications using watsonx?

介绍

访问 watsonx.ai LLM 的用户经常遇到的一个问题是“我们如何设置采样参数?” !

其实很简单。

采样参数(或生成参数)

  • 访问您的 watsonx.ai 实例。

How to set simply all “sampling parameters” or “generation parameters” for applications using watsonx?

  • 点击“打开提示实验室”。进入提示实验室后,在任一选项卡中,单击参数图标(如图所示最右侧的图标)。

How to set simply all “sampling parameters” or “generation parameters” for applications using watsonx?

您可以更改设置的LLM(之前使用的或默认设置的)。

  • 打开参数对话框后,可以根据需要进行设置。

How to set simply all “sampling parameters” or “generation parameters” for applications using watsonx?

  • 设置参数后,在同一组工具的图标上选择“查看代码>”。

How to set simply all “sampling parameters” or “generation parameters” for applications using watsonx?

接口将提供3种参数的代码嵌入实现; Curl、Node.js 和 Python 如下示例。

curl "https://us-south.ml.cloud.ibm.com/ml/v1/text/generation?version=2023-05-29" \
  -H 'Content-Type: application/json' \
  -H 'Accept: application/json' \
  -H "Authorization: Bearer ${YOUR_ACCESS_TOKEN}" \
  -d '{
  "input": "<|start_of_role|>system<|end_of_role|>You are Granite, an AI language model developed by IBM in 2024. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior.<|end_of_text|>\n<|start_of_role|>assistant<|end_of_role|>",
  "parameters": {
    "decoding_method": "sample",
    "max_new_tokens": 200,
    "min_new_tokens": 100,
    "random_seed": 42,
    "stop_sequences": [],
    "temperature": 0.7,
    "top_k": 50,
    "top_p": 1,
    "repetition_penalty": 1
  },
  "model_id": "ibm/granite-3-8b-instruct",
  "project_id": "the one you get"
}'
登录后复制
export const generateText = async () => {
 const url = "https://us-south.ml.cloud.ibm.com/ml/v1/text/generation?version=2023-05-29";
 const headers = {
  "Accept": "application/json",
  "Content-Type": "application/json",
  "Authorization": "Bearer YOUR_ACCESS_TOKEN"
 };
 const body = {
  input: "<|start_of_role|>system<|end_of_role|>You are Granite, an AI language model developed by IBM in 2024. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior.<|end_of_text|>\n<|start_of_role|>assistant<|end_of_role|>",
  parameters: {
   decoding_method: "sample",
   max_new_tokens: 200,
   min_new_tokens: 100,
   random_seed: 42,
   stop_sequences: [],
   temperature: 0.7,
   top_k: 50,
   top_p: 1,
   repetition_penalty: 1
  },
  model_id: "ibm/granite-3-8b-instruct",
  project_id: "the-one-you-get"
 };

 const response = await fetch(url, {
  headers,
  method: "POST",
  body: JSON.stringify(body)
 });

 if (!response.ok) {
  throw new Error("Non-200 response");
 }

 return await response.json();
}
登录后复制
import requests

url = "https://us-south.ml.cloud.ibm.com/ml/v1/text/generation?version=2023-05-29"

body = {
 "input": """<|start_of_role|>system<|end_of_role|>You are Granite, an AI language model developed by IBM in 2024. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior.<|end_of_text|>
<|start_of_role|>assistant<|end_of_role|>""",
 "parameters": {
  "decoding_method": "sample",
  "max_new_tokens": 200,
  "min_new_tokens": 100,
  "random_seed": 42,
  "temperature": 0.7,
  "top_k": 50,
  "top_p": 1,
  "repetition_penalty": 1
 },
 "model_id": "ibm/granite-3-8b-instruct",
 "project_id": "the-one-you-get"
}

headers = {
 "Accept": "application/json",
 "Content-Type": "application/json",
 "Authorization": "Bearer YOUR_ACCESS_TOKEN"
}

response = requests.post(
 url,
 headers=headers,
 json=body
)

if response.status_code != 200:
 raise Exception("Non-200 response: " + str(response.text))

data = response.json()
登录后复制

开发者唯一应该调整的信息是访问令牌。

瞧?

结论

watsonx.ai 平台使应用程序开发人员可以非常轻松地调整 LLM 采样参数集。

以上是如何为使用 watsonx 的应用程序简单设置所有'采样参数”或'生成参数”?的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

如何解决Linux终端中查看Python版本时遇到的权限问题? 如何解决Linux终端中查看Python版本时遇到的权限问题? Apr 01, 2025 pm 05:09 PM

Linux终端中查看Python版本时遇到权限问题的解决方法当你在Linux终端中尝试查看Python的版本时,输入python...

如何在使用 Fiddler Everywhere 进行中间人读取时避免被浏览器检测到? 如何在使用 Fiddler Everywhere 进行中间人读取时避免被浏览器检测到? Apr 02, 2025 am 07:15 AM

使用FiddlerEverywhere进行中间人读取时如何避免被检测到当你使用FiddlerEverywhere...

在Python中如何高效地将一个DataFrame的整列复制到另一个结构不同的DataFrame中? 在Python中如何高效地将一个DataFrame的整列复制到另一个结构不同的DataFrame中? Apr 01, 2025 pm 11:15 PM

在使用Python的pandas库时,如何在两个结构不同的DataFrame之间进行整列复制是一个常见的问题。假设我们有两个Dat...

如何在10小时内通过项目和问题驱动的方式教计算机小白编程基础? 如何在10小时内通过项目和问题驱动的方式教计算机小白编程基础? Apr 02, 2025 am 07:18 AM

如何在10小时内教计算机小白编程基础?如果你只有10个小时来教计算机小白一些编程知识,你会选择教些什么�...

Uvicorn是如何在没有serve_forever()的情况下持续监听HTTP请求的? Uvicorn是如何在没有serve_forever()的情况下持续监听HTTP请求的? Apr 01, 2025 pm 10:51 PM

Uvicorn是如何持续监听HTTP请求的?Uvicorn是一个基于ASGI的轻量级Web服务器,其核心功能之一便是监听HTTP请求并进�...

在Linux终端中使用python --version命令时如何解决权限问题? 在Linux终端中使用python --version命令时如何解决权限问题? Apr 02, 2025 am 06:36 AM

Linux终端中使用python...

如何绕过Investing.com的反爬虫机制获取新闻数据? 如何绕过Investing.com的反爬虫机制获取新闻数据? Apr 02, 2025 am 07:03 AM

攻克Investing.com的反爬虫策略许多人尝试爬取Investing.com(https://cn.investing.com/news/latest-news)的新闻数据时,常常�...

See all articles