计算令牌:对细节进行排序
六三八的女性面临着巨大的挑战:在严格的时间限制下破译不完整的地址、昵称和污迹斑斑的笔迹。同样,当使用 OpenAI 数据微调自定义数据时,了解代币的使用情况至关重要 - 不仅可以确保模型能够处理复杂的任务,还可以有效地管理成本。
使用 Tiktoken,我们计算文本数据中的代币计数,以保持在 OpenAI 的代币限制范围内并优化效率。微调模型不仅仅是一项技术挑战;更是一项挑战。它会带来财务影响。例如,OpenAI 的定价显示,微调 GPT-3.5 Turbo 的成本为每 1,000 个代币 0.008 美元。客观地说,1,000 个令牌大约相当于 750 个单词。
简而言之,微调可能会很昂贵,成本直接随着代币的使用而增加。提前规划和预算——就像六三八精心整理积压的工作一样——是成功的关键。
代码
import tiktoken def cal_num_tokens_from_row(string:str,encoding_name:str)-> int: encoding = tiktoken.encoding_for_model(encoding_name) num_tokens = len(encoding.encode(string)) return num_tokens def cal_num_tokens_from_df(df,encoding_name:str) -> int: total_tokens = 0 for text in df['text']: total_tokens += cal_num_tokens_from_row(text,encoding_name) return total_tokens total_tokens = cal_num_tokens_from_df(df,'gpt-3.5-turbo') print(f"total {total_tokens}")
根据代币总数,微调的成本可能约为 8-9 美元,这对于个人来说可能过于昂贵。规划和预算对于有效管理这些成本至关重要。
以上是计算令牌:对细节进行排序的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。
