PyTorch 中的 ImageNet
请我喝杯咖啡☕
*我的帖子解释了 ImageNet。
ImageNet()可以使用ImageNet数据集,如下所示:
*备忘录:
- 第一个参数是 root(必需类型:str 或 pathlib.Path)。 *绝对或相对路径都是可能的。
- 第二个参数是 split(可选-默认:"train"-类型:str):
*备注:
- 可以设置“train”(1,281,167张图片)或“val”(50,000张图片)。
- 不支持“测试”(100,000 张图像),因此我在 GitHub 上请求了该功能。
- 有转换参数(可选-默认:无-类型:可调用)。必须使用*transform=。
- 有 target_transform 参数(可选-默认:无-类型:可调用)。 - 有转换参数(可选-默认:无-类型:可调用)。必须使用*target_transform=。
- 有 loader 参数(可选-默认:torchvision.datasets.folder.default_loader-类型:可调用)。 *loader=必须使用。
- 您必须手动下载数据集(ILSVRC2012_devkit_t12.tar.gz、ILSVRC2012_img_train.tar 和 ILSVRC2012_img_val.tar 到 data/,然后运行 ImageNet() 提取并加载数据集。
- 关于训练图像索引和验证图像索引的类别标签,tench&Tincatinca(0) 分别为 0~1299 和 0~49,goldfish &鲫鱼(1) 是1300~2599 和 50~99, 大白鲨&白鲨&食人鲨&食人鲨&Carcharodon carcharias(2) 2600~3899和 100~149,虎鲨&Galeocerdo cuvieri(3) 是 3900~5199 和 150~199,锤头鲨&锤头鲨 (4) 为 5200~6499 且200~249,电鳐&螯虾&麻木鱼&鱼雷(5)分别为6500~7799和250~299,黄貂鱼(6) 是7800~9099和250~299,公鸡(7)是9100~10399和300~349,母鸡(8)是10400~11699和350~399, 鸵鸟&鸵鸟(9)分别是11700~12999和400~449等。
from torchvision.datasets import ImageNet from torchvision.datasets.folder import default_loader train_data = ImageNet( root="data" ) train_data = ImageNet( root="data", split="train", transform=None, target_transform=None, loader=default_loader ) val_data = ImageNet( root="data", split="val" ) len(train_data), len(val_data) # (1281167, 50000) train_data # Dataset ImageNet # Number of datapoints: 1281167 # Root location: D:/data # Split: train train_data.root # 'data' train_data.split # 'train' print(train_data.transform) # None print(train_data.target_transform) # None train_data.loader # <function torchvision.datasets.folder.default_loader(path: str) -> Any> len(train_data.classes), train_data.classes # (1000, # [('tench', 'Tinca tinca'), ('goldfish', 'Carassius auratus'), # ('great white shark', 'white shark', 'man-eater', 'man-eating shark', # 'Carcharodon carcharias'), ('tiger shark', 'Galeocerdo cuvieri'), # ('hammerhead', 'hammerhead shark'), ('electric ray', 'crampfish', # 'numbfish', 'torpedo'), ('stingray',), ('cock',), ('hen',), # ('ostrich', 'Struthio camelus'), ..., ('bolete',), ('ear', 'spike', # 'capitulum'), ('toilet tissue', 'toilet paper', 'bathroom tissue')]) train_data[0] # (<PIL.Image.Image image mode=RGB size=250x250>, 0) train_data[1] # (<PIL.Image.Image image mode=RGB size=200x150>, 0) train_data[2] # (<PIL.Image.Image image mode=RGB size=500x375>, 0) train_data[1300] # (<PIL.Image.Image image mode=RGB size=640x480>, 1) train_data[2600] # (<PIL.Image.Image image mode=RGB size=500x375>, 2) val_data[0] # (<PIL.Image.Image image mode=RGB size=500x375>, 0) val_data[1] # (<PIL.Image.Image image mode=RGB size=500x375>, 0) val_data[2] # (<PIL.Image.Image image mode=RGB size=500x375>, 0) val_data[50] # (<PIL.Image.Image image mode=RGB size=500x500>, 1) val_data[100] # (<PIL.Image.Image image mode=RGB size=679x444>, 2) import matplotlib.pyplot as plt def show_images(data, ims, main_title=None): plt.figure(figsize=[12, 6]) plt.suptitle(t=main_title, y=1.0, fontsize=14) for i, j in enumerate(iterable=ims, start=1): plt.subplot(2, 5, i) im, lab = data[j] plt.imshow(X=im) plt.title(label=lab) plt.tight_layout(h_pad=3.0) plt.show() train_ims = [0, 1, 2, 1300, 2600, 3900, 5200, 6500, 7800, 9100] val_ims = [0, 1, 2, 50, 100, 150, 200, 250, 300, 350] show_images(data=train_data, ims=train_ims, main_title="train_data") show_images(data=val_data, ims=val_ims, main_title="val_data")
登录后复制
以上是PyTorch 中的 ImageNet的详细内容。更多信息请关注PHP中文网其他相关文章!
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章
Windows 11 KB5054979中的新功能以及如何解决更新问题
3 周前
By DDD
如何修复KB5055523无法在Windows 11中安装?
2 周前
By DDD
Inzoi:如何申请学校和大学
4 周前
By DDD
如何修复KB5055518无法在Windows 10中安装?
2 周前
By DDD
Roblox:Dead Rails - 如何召唤和击败Nikola Tesla
1 个月前
By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Linux终端中查看Python版本时遇到权限问题的解决方法当你在Linux终端中尝试查看Python的版本时,输入python...

使用FiddlerEverywhere进行中间人读取时如何避免被检测到当你使用FiddlerEverywhere...

在使用Python的pandas库时,如何在两个结构不同的DataFrame之间进行整列复制是一个常见的问题。假设我们有两个Dat...

Uvicorn是如何持续监听HTTP请求的?Uvicorn是一个基于ASGI的轻量级Web服务器,其核心功能之一便是监听HTTP请求并进�...

如何在10小时内教计算机小白编程基础?如果你只有10个小时来教计算机小白一些编程知识,你会选择教些什么�...

攻克Investing.com的反爬虫策略许多人尝试爬取Investing.com(https://cn.investing.com/news/latest-news)的新闻数据时,常常�...
