首页 > 后端开发 > Python教程 > PyTorch 中的 ImageNet

PyTorch 中的 ImageNet

Barbara Streisand
发布: 2025-01-04 22:25:40
原创
490 人浏览过

请我喝杯咖啡☕

*我的帖子解释了 ImageNet。

ImageNet()可以使用ImageNet数据集,如下所示:

*备忘录:

  • 第一个参数是 root(必需类型:str 或 pathlib.Path)。 *绝对或相对路径都是可能的。
  • 第二个参数是 split(可选-默认:"train"-类型:str): *备注:
    • 可以设置“train”(1,281,167张图片)或“val”(50,000张图片)。
    • 不支持“测试”(100,000 张图像),因此我在 GitHub 上请求了该功能。
  • 有转换参数(可选-默认:无-类型:可调用)。必须使用*transform=。
  • 有 target_transform 参数(可选-默认:无-类型:可调用)。 - 有转换参数(可选-默认:无-类型:可调用)。必须使用*target_transform=。
  • 有 loader 参数(可选-默认:torchvision.datasets.folder.default_loader-类型:可调用)。 *loader=必须使用。
  • 您必须手动下载数据集(ILSVRC2012_devkit_t12.tar.gz、ILSVRC2012_img_train.tar 和 ILSVRC2012_img_val.tar 到 data/,然后运行 ​​ImageNet() 提取并加载数据集。
  • 关于训练图像索引和验证图像索引的类别标签,tench&Tincatinca(0) 分别为 0~1299 和 0~49,goldfish &鲫鱼(1) 是1300~2599 和 50~99, 大白鲨&白鲨&食人鲨&食人鲨&Carcharodon carcharias(2) 2600~3899和 100~149,虎鲨&Galeocerdo cuvieri(3) 是 3900~5199 和 150~199,锤头鲨&锤头鲨 (4) 为 5200~6499 且200~249,电鳐&螯虾&麻木鱼&鱼雷(5)分别为6500~7799和250~299,黄貂鱼(6) 是7800~9099和250~299,公鸡(7)是9100~10399和300~349,母鸡(8)是10400~11699和350~399, 鸵鸟&鸵鸟(9)分别是11700~12999和400~449等。
from torchvision.datasets import ImageNet
from torchvision.datasets.folder import default_loader

train_data = ImageNet(
    root="data"
)

train_data = ImageNet(
    root="data",
    split="train",
    transform=None,
    target_transform=None,
    loader=default_loader
)

val_data = ImageNet(
    root="data",
    split="val"
)

len(train_data), len(val_data)
# (1281167, 50000)

train_data
# Dataset ImageNet
#     Number of datapoints: 1281167
#     Root location: D:/data
#     Split: train

train_data.root
# 'data'

train_data.split
# 'train'

print(train_data.transform)
# None

print(train_data.target_transform)
# None

train_data.loader
# <function torchvision.datasets.folder.default_loader(path: str) -> Any>

len(train_data.classes), train_data.classes
# (1000,
#  [('tench', 'Tinca tinca'), ('goldfish', 'Carassius auratus'),
#   ('great white shark', 'white shark', 'man-eater', 'man-eating shark',
#    'Carcharodon carcharias'), ('tiger shark', 'Galeocerdo cuvieri'),
#   ('hammerhead', 'hammerhead shark'), ('electric ray', 'crampfish',
#    'numbfish', 'torpedo'), ('stingray',), ('cock',), ('hen',),
#   ('ostrich', 'Struthio camelus'), ..., ('bolete',), ('ear', 'spike',
#    'capitulum'), ('toilet tissue', 'toilet paper', 'bathroom tissue')])

train_data[0]
# (<PIL.Image.Image image mode=RGB size=250x250>, 0)

train_data[1]
# (<PIL.Image.Image image mode=RGB size=200x150>, 0)

train_data[2]
# (<PIL.Image.Image image mode=RGB size=500x375>, 0)

train_data[1300]
# (<PIL.Image.Image image mode=RGB size=640x480>, 1)

train_data[2600]
# (<PIL.Image.Image image mode=RGB size=500x375>, 2)

val_data[0]
# (<PIL.Image.Image image mode=RGB size=500x375>, 0)

val_data[1]
# (<PIL.Image.Image image mode=RGB size=500x375>, 0)

val_data[2]
# (<PIL.Image.Image image mode=RGB size=500x375>, 0)

val_data[50]
# (<PIL.Image.Image image mode=RGB size=500x500>, 1)

val_data[100]
# (<PIL.Image.Image image mode=RGB size=679x444>, 2)

import matplotlib.pyplot as plt

def show_images(data, ims, main_title=None):
    plt.figure(figsize=[12, 6])
    plt.suptitle(t=main_title, y=1.0, fontsize=14)
    for i, j in enumerate(iterable=ims, start=1):
        plt.subplot(2, 5, i)
        im, lab = data[j]
        plt.imshow(X=im)
        plt.title(label=lab)
    plt.tight_layout(h_pad=3.0)
    plt.show()

train_ims = [0, 1, 2, 1300, 2600, 3900, 5200, 6500, 7800, 9100]
val_ims = [0, 1, 2, 50, 100, 150, 200, 250, 300, 350]

show_images(data=train_data, ims=train_ims, main_title="train_data")
show_images(data=val_data, ims=val_ims, main_title="val_data")
登录后复制

ImageNet in PyTorch

ImageNet in PyTorch

以上是PyTorch 中的 ImageNet的详细内容。更多信息请关注PHP中文网其他相关文章!

来源:dev.to
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
作者最新文章
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板