用 igt 赚钱
每周挑战 303:Python 和 Perl 解决方案
Mohammad S. Anwar 的每周挑战提供了定期的编码练习。 下面介绍的我的解决方案最初是用 Python 编写的,然后适用于 Perl。 这种双重方法提高了编码能力。
挑战 303:解决方案
任务 1:生成偶数 3 位整数
任务描述:
给定一个正整数列表,生成可以使用列表中的数字组成的所有唯一偶数 3 位整数。
Python 解决方案:
此 Python 解决方案利用 itertools.permutations
函数有效生成所有可能的 3 位数组合。 集合用于保持唯一性。
from itertools import permutations def three_digits_even(ints: list) -> list: solution = set() for p in permutations(ints, 3): num_str = "".join(map(str, p)) num = int(num_str) if num >= 100 and num % 2 == 0 and num_str[0] != '0': solution.add(num) return sorted(list(solution))
Perl 解决方案:
Perl 等效项使用 Algorithm::Permute
模块进行排列和哈希以确保唯一性。
use Algorithm::Permute; sub three_digits_even { my @ints = @_; my %seen; my @result; my $p = Algorithm::Permute->new(\@ints, 3); while (my @perm = $p->next) { my $num_str = join('', @perm); my $num = $num_str; if ($num >= 100 and $num % 2 == 0 and $num_str !~ /^0/) { push @result, $num unless $seen{$num}++; } } return sort {$a <=> $b} @result; }
示例:
<code># Python print(three_digits_even([2, 1, 3, 0])) # Output: [102, 120, 130, 132, 210, 230, 302, 310, 312, 320] print(three_digits_even([2, 2, 8, 8, 2])) # Output: [222, 228, 282, 288, 822, 828, 882] # Perl print "@{[three_digits_even(2, 1, 3, 0)]}\n"; # Output: 102 120 130 132 210 230 302 310 312 320 print "@{[three_digits_even(2, 2, 8, 8, 2)]}\n"; # Output: 222 228 282 288 822 828 882</code>
任务 2:删除并赚取
任务描述:
给定一个整数数组,通过重复删除一个元素,获得其值,然后删除所有值比被删除元素少一和多一的元素,找到你可以获得的最大分数。
Python 解决方案:
此 Python 解决方案使用 Counter
来跟踪元素频率,并采用递归函数来探索不同的删除策略。
from collections import Counter def delete_and_earn(ints: list) -> int: freq = Counter(ints) return max_score(freq) def max_score(freq: Counter) -> int: max_points = 0 for num in list(freq): # Iterate through a copy to safely delete points = num * freq[num] new_freq = freq.copy() del new_freq[num] if num - 1 in new_freq: del new_freq[num - 1] if num + 1 in new_freq: del new_freq[num + 1] max_points = max(max_points, points + (0 if not new_freq else max_score(new_freq))) return max_points
Perl 解决方案:
Perl 解决方案反映了 Python 方法,使用哈希进行频率计数和递归函数。
sub delete_and_earn { my %freq = map { $_ => 1 + $freq{$_} // 0 } @_; return max_score(\%freq); } sub max_score { my $freq = shift; my $max_points = 0; foreach my $num (keys %$freq) { my $points = $num * $freq->{$num}; my %new_freq = %$freq; delete $new_freq{$num}; delete $new_freq{$num - 1}; delete $new_freq{$num + 1}; $max_points = max($max_points, $points + (0 || max_score(\%new_freq))); } return $max_points; } sub max { return shift if @_ == 1; return $_[0] > $_[1] ? $_[0] : $_[1]; }
示例:
<code># Python print(delete_and_earn([3, 4, 2])) # Output: 6 print(delete_and_earn([2, 2, 3, 3, 3, 4])) # Output: 9 # Perl print delete_and_earn(3, 4, 2), "\n"; # Output: 6 print delete_and_earn(2, 2, 3, 3, 3, 4), "\n"; # Output: 9</code>
这些解决方案展示了解决每周挑战 303 中这两个任务的高效且清晰的方法。Python 和 Perl 的使用凸显了算法问题解决在不同编程语言之间的可移植性。
以上是用 igt 赚钱的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优
