Python 时间序列分类完整介绍
时间序列数据在众多行业中无处不在,然而,虽然时间序列预测受到相当多的关注,但时间序列分类却经常被忽视。本文全面介绍了时间序列分类,探索其实际应用,回顾各种方法,并在基于 Python 的分类项目中演示其中一些技术。让我们开始吧!
理解时间序列分类
时间序列分类是一种监督机器学习技术,其中随着时间的推移测量的一个或多个特征用于分配类别。 目标是标记时间序列而不是预测未来值。
时间序列分类的实际应用
时间序列分类有着广泛的用途,特别是在传感器数据方面。 主要应用包括:
- 预测性维护:监控设备以预测潜在故障。
- 医疗保健:分析心电图 (ECG) 数据以评估患者健康状况。
- 语音识别:根据声波模式识别口语单词和说话人。
- 食品光谱学:从光谱数据中确定酒精含量或识别食品成分。
- 网络安全:检测表明欺诈或违规的异常活动。
这些多样化的应用凸显了时间序列分类在各个领域的重要性。
时间序列分类模型概述
时间序列分类有多种方法。 本节对每个内容进行简要概述,并在本专用指南中提供更详细的解释[链接到指南,如果有的话]。
1。基于距离的模型: 这些模型利用距离度量(例如欧几里德距离)对样本进行分类。动态时间规整 (DTW) 提供了一种更稳健的方法,可适应一系列不同的长度并处理稍微异相的模式。 示例包括 K 最近邻 (KNN) 和 ShapeDTW。
2。基于字典的模型: 这些模型使用符号对系列模式进行编码,并利用符号频率进行分类。 示例包括 BOSS、WEASEL、TDE 和 MUSE。
3。集成方法: 这些不是模型本身,而是结合多个基本估计器以改进预测的框架。 一个关键优势是它们能够使用单变量模型(例如,bagging)处理多变量数据。 示例包括装袋、加权集成和时间序列森林。
4。基于特征的方法:这些方法从时间序列中提取特征(例如,汇总统计、Catch22、矩阵配置文件、TSFresh),然后用于训练分类器。
5。基于间隔的模型: 这些模型从时间序列中提取多个间隔,使用上述方法计算特征,然后训练分类器。示例包括 RISE、CIF 和 DrCIF。
6。基于内核的模型: 这些模型使用内核函数将时间序列映射到更高维度的空间,以便于分类。示例包括支持向量分类器 (SVC)、Rocket 和 Arsenal(Rocket 的集合)。
7。 Shapelet 分类器: 该分类器识别并利用 shapelet(判别性子序列)基于距离比较进行分类。
8。元分类器: 这些结合了各种方法来实现稳健的分类性能。 HIVE-COTE 是一个例子,它结合了 TDE、Shapelet、DrCIF 和 Arsenal,尽管它的计算成本很高。
方法的选择取决于数据特征、计算资源和所需的准确性等因素。
实践时间序列分类项目 (Python)
本节将上述一些技术应用于 BasicMotions 数据集 [数据集链接],其中包括来自执行各种活动(站立、行走、跑步、羽毛球)的个人的加速度计和陀螺仪数据。
设置:
import pandas as pd import numpy as np import matplotlib.pyplot as plt from sktime.datasets import load_basic_motions from sklearn.model_selection import GridSearchCV, KFold
数据加载:
X_train, y_train = load_basic_motions(split='train', return_type='numpy3D') X_test, y_test = load_basic_motions(split='test', return_type='numpy3D')
数据可视化(比较步行和羽毛球的示例):
# ... (Visualization code as provided in the original article) ...
KNN 分类:
# ... (KNN code as provided in the original article) ...
用黄鼠狼装袋:
# ... (Bagging with WEASEL code as provided in the original article) ...
评价:
# ... (Evaluation code as provided in the original article) ...
结论
本文介绍了时间序列分类,涵盖了其应用和各种方法。 实际项目演示了KNN和WEASEL装袋的应用。 鼓励对该领域的进一步探索。
后续步骤
要继续学习,请考虑探索原始文章中提到的资源,包括时间序列分类方法指南和有关该主题的课程。
参考文献
- BasicMotions 数据集 — [数据集链接]
- Sktime — [sktime 链接]
以上是Python 时间序列分类完整介绍的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。
