首页 后端开发 Python教程 Python 时间序列分类完整介绍

Python 时间序列分类完整介绍

Jan 15, 2025 am 06:57 AM

时间序列数据在众多行业中无处不在,然而,虽然时间序列预测受到相当多的关注,但时间序列分类却经常被忽视。本文全面介绍了时间序列分类,探索其实际应用,回顾各种方法,并在基于 Python 的分类项目中演示其中一些技术。让我们开始吧!

理解时间序列分类

时间序列分类是一种监督机器学习技术,其中随着时间的推移测量的一个或多个特征用于分配类别。 目标是标记时间序列而不是预测未来值。

时间序列分类的实际应用

时间序列分类有着广泛的用途,特别是在传感器数据方面。 主要应用包括:

  • 预测性维护:监控设备以预测潜在故障。
  • 医疗保健:分析心电图 (ECG) 数据以评估患者健康状况。
  • 语音识别:根据声波模式识别口语单词和说话人。
  • 食品光谱学:从光谱数据中确定酒精含量或识别食品成分。
  • 网络安全:检测表明欺诈或违规的异常活动。

这些多样化的应用凸显了时间序列分类在各个领域的重要性。

时间序列分类模型概述

时间序列分类有多种方法。 本节对每个内容进行简要概述,并在本专用指南中提供更详细的解释[链接到指南,如果有的话]。

1。基于距离的模型: 这些模型利用距离度量(例如欧几里德距离)对样本进行分类。动态时间规整 (DTW) 提供了一种更稳健的方法,可适应一系列不同的长度并处理稍微异相的模式。 示例包括 K 最近邻 (KNN) 和 ShapeDTW。

The Complete Introduction to Time Series Classification in Python

2。基于字典的模型: 这些模型使用符号对系列模式进行编码,并利用符号频率进行分类。 示例包括 BOSS、WEASEL、TDE 和 MUSE。

3。集成方法: 这些不是模型本身,而是结合多个基本估计器以改进预测的框架。 一个关键优势是它们能够使用单变量模型(例如,bagging)处理多变量数据。 示例包括装袋、加权集成和时间序列森林。

4。基于特征的方法:这些方法从时间序列中提取特征(例如,汇总统计、Catch22、矩阵配置文件、TSFresh),然后用于训练分类器。

5。基于间隔的模型: 这些模型从时间序列中提取多个间隔,使用上述方法计算特征,然后训练分类器。示例包括 RISE、CIF 和 DrCIF。

6。基于内核的模型: 这些模型使用内核函数将时间序列映射到更高维度的空间,以便于分类。示例包括支持向量分类器 (SVC)、Rocket 和 Arsenal(Rocket 的集合)。

7。 Shapelet 分类器: 该分类器识别并利用 shapelet(判别性子序列)基于距离比较进行分类。

8。元分类器: 这些结合了各种方法来实现稳健的分类性能。 HIVE-COTE 是一个例子,它结合了 TDE、Shapelet、DrCIF 和 Arsenal,尽管它的计算成本很高。

方法的选择取决于数据特征、计算资源和所需的准确性等因素。

实践时间序列分类项目 (Python)

本节将上述一些技术应用于 BasicMotions 数据集 [数据集链接],其中包括来自执行各种活动(站立、行走、跑步、羽毛球)的个人的加速度计和陀螺仪数据。

设置:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

from sktime.datasets import load_basic_motions
from sklearn.model_selection import GridSearchCV, KFold
登录后复制

数据加载:

X_train, y_train = load_basic_motions(split='train', return_type='numpy3D')
X_test, y_test = load_basic_motions(split='test', return_type='numpy3D')
登录后复制

数据可视化(比较步行和羽毛球的示例):

# ... (Visualization code as provided in the original article) ...
登录后复制

KNN 分类:

# ... (KNN code as provided in the original article) ...
登录后复制

用黄鼠狼装袋:

# ... (Bagging with WEASEL code as provided in the original article) ...
登录后复制

评价:

# ... (Evaluation code as provided in the original article) ...
登录后复制

The Complete Introduction to Time Series Classification in Python The Complete Introduction to Time Series Classification in Python The Complete Introduction to Time Series Classification in Python

结论

本文介绍了时间序列分类,涵盖了其应用和各种方法。 实际项目演示了KNN和WEASEL装袋的应用。 鼓励对该领域的进一步探索。

后续步骤

要继续学习,请考虑探索原始文章中提到的资源,包括时间序列分类方法指南和有关该主题的课程。

参考文献

  • BasicMotions 数据集 — [数据集链接]
  • Sktime — [sktime 链接]

以上是Python 时间序列分类完整介绍的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

<🎜>:泡泡胶模拟器无穷大 - 如何获取和使用皇家钥匙
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系统,解释
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆树的耳语 - 如何解锁抓钩
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1666
14
CakePHP 教程
1425
52
Laravel 教程
1327
25
PHP教程
1273
29
C# 教程
1253
24
Python:游戏,Guis等 Python:游戏,Guis等 Apr 13, 2025 am 12:14 AM

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

Python与C:学习曲线和易用性 Python与C:学习曲线和易用性 Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python和时间:充分利用您的学习时间 Python和时间:充分利用您的学习时间 Apr 14, 2025 am 12:02 AM

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python vs.C:探索性能和效率 Python vs.C:探索性能和效率 Apr 18, 2025 am 12:20 AM

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

Python标准库的哪一部分是:列表或数组? Python标准库的哪一部分是:列表或数组? Apr 27, 2025 am 12:03 AM

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python:自动化,脚本和任务管理 Python:自动化,脚本和任务管理 Apr 16, 2025 am 12:14 AM

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

学习Python:2小时的每日学习是否足够? 学习Python:2小时的每日学习是否足够? Apr 18, 2025 am 12:22 AM

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python vs. C:了解关键差异 Python vs. C:了解关键差异 Apr 21, 2025 am 12:18 AM

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

See all articles