首页 后端开发 Python教程 构建人工智能销售代理:从语音到推销。

构建人工智能销售代理:从语音到推销。

Jan 18, 2025 pm 06:13 PM

Building an AI Sales Agent: From Voice to Pitch.

项目概述

EnCode 2025 挑战赛中,我的目标是创建一个能够进行高质量、自然流畅语音交互的 AI 销售代理,并力求实现超低延迟,如同与真人对话般的体验。最终,我构建了一个能够完整处理在线辅导中心销售对话的系统,涵盖从问候潜在客户到了解需求并推荐相关课程的全过程,并以积极友好的、类人化的语音进行交流。想象一下,一个不知疲倦、永远保持最佳状态的销售人员!

技术栈

  • 语音处理: Whisper Large V3 Turbo (确保清晰的语音识别)
  • 核心逻辑: LLaMA 3.3 70B (实现智能对话)
  • 语音输出: F5 TTS (生成自然流畅的语音回复)
  • 数据库: Pinecone 向量数据库 (用于上下文管理和信息检索)
  • 演示平台: Google Colab

系统工作原理

系统遵循三个主要步骤:

  1. 语音转文本 (STT)
  2. 大型语言模型 (LLM)
  3. 文本转语音 (TTS)

流程图:用户 -> STT -> LLM -> TTS -> 用户

详细流程:

  1. 客户发言 -> Whisper 转录文本。
  2. 阶段管理器 (使用正则表达式) 追踪对话阶段。
  3. Pinecone 从数据库中提取相关数据。
  4. LLaMA 3.3 70B 构建完美的回复。
  5. F5 TTS 将文本转换为自然语音。

主要功能

  • 智能语音选择: 提供 6 种不同的 AI 语音 (2 男 4 女)
  • 上下文感知回复: 基于向量相似性搜索技术
  • 结构化对话流程: 由专用的阶段管理器控制

当前局限性

  • 演示环境: 基于 Google Colab 运行。
  • 内存限制: 8k token 的上下文窗口限制。
  • 计算资源消耗: 资源占用较大。
  • API 依赖: 核心功能依赖于多个 API。
  • 延迟较高: 存在一定的延迟问题。

经验总结

技术方面:

  • 向量数据库的应用: 使用 Pinecone 向量数据库让我体会到在上下文窗口有限的情况下,向量数据库如何改变游戏规则。毫秒级的相似性搜索功能,能够有效处理对话历史和训练资料,非常强大。
  • 阶段管理的重要性: 通过明确对话阶段,可以轻松地整合与该阶段相关的示例,例如如何进行推销、应该提出哪些问题等等。
  • Web 集成: 使用 fastapi 高效地进行前端和后端数据交互至关重要。通过 Webhooks,我们能够在只初始化一次 AI 通话的情况下,在整个对话过程中进行数据交换,并保持连接。

系统设计方面:

  • 分块处理的重要性: 将音频分成 5 秒长的片段进行处理,而不是等待完整的语句,显着改善了用户体验,并缩短了处理时间。这需要在准确性和速度之间找到最佳平衡点。
  • 模块化架构的优势: 将系统分解成独立的服务 (STT、LLM、TTS),极大地简化了开发和调试过程。当出现问题时,可以快速定位需要修复的部分。

实际限制方面:

  • API 成本: 管理多个 API 调用 (Whisper、LLAMA) 让我了解到优化 API 使用的重要性。在保证速度的同时,尽量减少 API 调用次数是一项很大的挑战。
  • 降低延迟: 当不断从互联网上获取和处理数据时,降低延迟非常困难。未来,我将尝试尽量减少从互联网上传输或下载数据的次数。

意外挑战方面:

  • 提示词工程: 提示词工程至关重要,它决定了模型是否能够像人类一样连贯地表达,还是会重复相同的句子。
  • 上下文窗口限制: 8k token 的限制迫使我不得不巧妙地管理上下文。不是存储所有信息,而是从向量数据库中获取相关的片段,这让我能够为 LLM 设计一个包含所有必要信息的结构。

未来计划

  • 使用多线程技术降低延迟。
  • 添加多语言支持。
  • 添加更多类型的机器人,例如“线索机器人”,在初步线索之后联系客户促成交易。

体验项目

https://www.php.cn/link/55e2c9d06a7261846e96b8bb2d4e1fe5

GitHub ---

欢迎在评论区提出您的宝贵建议!

以上是构建人工智能销售代理:从语音到推销。的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

<🎜>:泡泡胶模拟器无穷大 - 如何获取和使用皇家钥匙
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆树的耳语 - 如何解锁抓钩
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系统,解释
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1669
14
CakePHP 教程
1428
52
Laravel 教程
1329
25
PHP教程
1273
29
C# 教程
1256
24
Python与C:学习曲线和易用性 Python与C:学习曲线和易用性 Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python和时间:充分利用您的学习时间 Python和时间:充分利用您的学习时间 Apr 14, 2025 am 12:02 AM

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python vs.C:探索性能和效率 Python vs.C:探索性能和效率 Apr 18, 2025 am 12:20 AM

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

学习Python:2小时的每日学习是否足够? 学习Python:2小时的每日学习是否足够? Apr 18, 2025 am 12:22 AM

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python标准库的哪一部分是:列表或数组? Python标准库的哪一部分是:列表或数组? Apr 27, 2025 am 12:03 AM

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python:自动化,脚本和任务管理 Python:自动化,脚本和任务管理 Apr 16, 2025 am 12:14 AM

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

Python vs. C:了解关键差异 Python vs. C:了解关键差异 Apr 21, 2025 am 12:18 AM

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

Web开发的Python:关键应用程序 Web开发的Python:关键应用程序 Apr 18, 2025 am 12:20 AM

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优

See all articles