首页 后端开发 Python教程 在 PyTorch 中调整大小

在 PyTorch 中调整大小

Jan 19, 2025 pm 10:12 PM

请我喝杯咖啡☕

*备忘录:

  • 我的帖子解释了 OxfordIIITPet()。

Resize() 可以调整零个或多个图像的大小,如下所示:

*备忘录:

  • 初始化的第一个参数是 size(必需类型:int 或 tuple/list(int)): *备注:
    • 它是[宽度,高度]。
    • 必须是 1
    • 元组/列表必须是具有 1 或 2 个元素的一维。
    • 单个值(int 或 tuple/list(int`))应用于较小图像的宽度或高度边缘,然后另一个较大的宽度或高度边缘也会调整大小: *备注:
    • 如果图像宽度小于其高度,则为 [尺寸, 尺寸 * 宽度 / 高度]。
    • 如果图像宽度大于其高度,则为 [尺寸 * 宽度 / 高度 , 尺寸]。
    • 如果图像宽度等于其高度,则为 [size, size]。
  • 初始化的第二个参数是插值(Optional-Default:InterpolationMode.BILINEAR-Type:InterpolationMode)。
  • 初始化的第三个参数是 max_size(Optional-Default:None-Type:int): *备注:
    • 仅当 size 为单个值(int 或 tuple/list(int`))时才支持。
    • 应用尺寸后,如果较大图像的宽度或高度边缘超过它,则会将其应用于较大图像的宽度或高度边缘以限制图像尺寸,然后其他较小图像的宽度或高度边缘也会变得比之前小。
  • 初始化的第四个参数是抗锯齿(可选默认值:True-Type:bool)。 *即使设置为 False,插值为 InterpolationMode.BILINEAR 或 InterpolationMode.BICUBIC 时也始终为 True。
  • 第一个参数是img(必需类型:PIL图像或张量(int,float,complex或bool)): *备注:
    • 张量必须是一个或多个元素的 3D 或多维张量。
    • 不要使用img=。
  • v2建议按照V1还是V2使用?我应该使用哪一个?
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import Resize
from torchvision.transforms.functional import InterpolationMode

resize = Resize(size=100)
resize = Resize(size=100,
                interpolation=InterpolationMode.BILINEAR,
                max_size=None,
                antialias=True)
resize
# Resize(size=[100],
#        interpolation=InterpolationMode.BILINEAR,
#        antialias=True)

resize.size
# [100]

resize.interpolation
# <InterpolationMode.BILINEAR: 'bilinear'>

print(resize.max_size)
# None

resize.antialias
# True

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

p1000_data = OxfordIIITPet(
    root="data",
    transform=Resize(size=1000)
    # transform=Resize(size=[1000])
)

p100_data = OxfordIIITPet(
    root="data",
    transform=Resize(size=100)
)

p50_data = OxfordIIITPet(
    root="data",
    transform=Resize(size=50)
)

p10_data = OxfordIIITPet(
    root="data",
    transform=Resize(size=10)
)

p100p180_data = OxfordIIITPet(
    root="data",
    transform=Resize(size=[100, 180])
)

p180p100_data = OxfordIIITPet(
    root="data",
    transform=Resize(size=[180, 100])
)

p100ms110_data = OxfordIIITPet(
    root="data",
    transform=Resize(size=100, max_size=110)
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=(10, 5))
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
show_images1(data=p1000_data, main_title="p1000_data")
show_images1(data=p100_data, main_title="p100_data")
show_images1(data=p50_data, main_title="p50_data")
show_images1(data=p10_data, main_title="p10_data")
print()
show_images1(data=origin_data, main_title="origin_data")
show_images1(data=p100p180_data, main_title="p100p180_data")
show_images1(data=p180p100_data, main_title="p180p100_data")
print()
show_images1(data=p100_data, main_title="p100_data")
show_images1(data=p100ms110_data, main_title='p100ms110_data')

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, s=None, ms=None):
    plt.figure(figsize=(10, 5))
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        if not s:
            s = im.size
        resize = Resize(size=s, max_size=ms) # Here
        plt.imshow(X=resize(im)) # Here
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
show_images2(data=origin_data, main_title="p1000_data", s=1000)
show_images2(data=origin_data, main_title="p100_data", s=100)
show_images2(data=origin_data, main_title="p50_data", s=50)
show_images2(data=origin_data, main_title="p10_data", s=10)
print()
show_images2(data=origin_data, main_title="origin_data")
show_images2(data=origin_data, main_title="p100p180_data", s=[100, 180])
show_images2(data=origin_data, main_title="p180p100_data", s=[180, 100])
print()
show_images2(data=origin_data, main_title="p100_data", s=100)
show_images2(data=origin_data, main_title="p100ms110_data", s=100, ms=110)
登录后复制

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description


Image description

Image description

以上是在 PyTorch 中调整大小的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

Python vs.C:申请和用例 Python vs.C:申请和用例 Apr 12, 2025 am 12:01 AM

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

您可以在2小时内学到多少python? 您可以在2小时内学到多少python? Apr 09, 2025 pm 04:33 PM

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

Python:游戏,Guis等 Python:游戏,Guis等 Apr 13, 2025 am 12:14 AM

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

2小时的Python计划:一种现实的方法 2小时的Python计划:一种现实的方法 Apr 11, 2025 am 12:04 AM

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python:探索其主要应用程序 Python:探索其主要应用程序 Apr 10, 2025 am 09:41 AM

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

Python与C:学习曲线和易用性 Python与C:学习曲线和易用性 Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python和时间:充分利用您的学习时间 Python和时间:充分利用您的学习时间 Apr 14, 2025 am 12:02 AM

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python:自动化,脚本和任务管理 Python:自动化,脚本和任务管理 Apr 16, 2025 am 12:14 AM

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

See all articles