目录
深入研究混合相似度算法
核心组件
详细分解
1.模型设置
2.特征提取
3.神经网络融合
实际应用
结论
首页 后端开发 Python教程 混合相似度算法

混合相似度算法

Jan 21, 2025 pm 10:17 PM

HybridSimilarity Algorithm

深入研究混合相似度算法

本文探讨了 HybridSimilarity 算法,这是一种复杂的神经网络,旨在评估文本对之间的相似性。 这种混合模型巧妙地整合了词汇、语音、语义和句法比较,以获得全面的相似度得分。

import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import TruncatedSVD
from sentence_transformers import SentenceTransformer
from Levenshtein import ratio as levenshtein_ratio
from phonetics import metaphone
import torch
import torch.nn as nn

class HybridSimilarity(nn.Module):
    def __init__(self):
        super().__init__()
        self.bert = SentenceTransformer('all-MiniLM-L6-v2')
        self.tfidf = TfidfVectorizer()
        self.attention = nn.MultiheadAttention(embed_dim=384, num_heads=4)
        self.fc = nn.Sequential(
            nn.Linear(1152, 256),
            nn.ReLU(),
            nn.LayerNorm(256),
            nn.Linear(256, 1),
            nn.Sigmoid()
        )

    def _extract_features(self, text1, text2):
        # Feature Extraction
        features = {}

        # Lexical Analysis
        features['levenshtein'] = levenshtein_ratio(text1, text2)
        features['jaccard'] = len(set(text1.split()) & set(text2.split())) / len(set(text1.split()) | set(text2.split()))

        # Phonetic Analysis
        features['metaphone'] = 1.0 if metaphone(text1) == metaphone(text2) else 0.0

        # Semantic Analysis (BERT)
        emb1 = self.bert.encode(text1, convert_to_tensor=True)
        emb2 = self.bert.encode(text2, convert_to_tensor=True)
        features['semantic_cosine'] = nn.CosineSimilarity()(emb1, emb2).item()

        # Syntactic Analysis (LSA-TFIDF)
        tfidf_matrix = self.tfidf.fit_transform([text1, text2])
        svd = TruncatedSVD(n_components=1)
        lsa = svd.fit_transform(tfidf_matrix)
        features['lsa_cosine'] = np.dot(lsa[0], lsa[1].T)[0][0]

        # Attention Mechanism
        att_output, _ = self.attention(
            emb1.unsqueeze(0).unsqueeze(0), 
            emb2.unsqueeze(0).unsqueeze(0), 
            emb2.unsqueeze(0).unsqueeze(0)
        )
        features['attention_score'] = att_output.mean().item()

        return torch.tensor(list(features.values())).unsqueeze(0)

    def forward(self, text1, text2):
        features = self._extract_features(text1, text2)
        return self.fc(features).item()

def similarity_coefficient(text1, text2):
    model = HybridSimilarity()
    return model(text1, text2)
登录后复制
登录后复制

核心组件

HybridSimilarity 模型依赖于以下关键组件:

  • 句子变压器:利用预先训练的变压器模型进行语义嵌入生成。
  • Levenshtein Distance: 基于字符级编辑计算词汇相似度。
  • 元音位: 确定语音相似性。
  • TF-IDF 和截断 SVD: 应用潜在语义分析 (LSA) 来实现语法相似性。
  • PyTorch:提供了用于构建具有注意力机制和全连接层的自定义神经网络的框架。

详细分解

1.模型设置

HybridSimilarity 类,扩展 nn.Module,初始化:

  • 一个基于BERT的句子嵌入模型 (all-MiniLM-L6-v2)。
  • TF-IDF 矢量化器
  • 一个多头注意力机制
  • 一个完全连接的网络来聚合特征并生成最终的相似度分数。
self.bert = SentenceTransformer('all-MiniLM-L6-v2')
self.tfidf = TfidfVectorizer()
self.attention = nn.MultiheadAttention(embed_dim=384, num_heads=4)
self.fc = nn.Sequential(
    nn.Linear(1152, 256),
    nn.ReLU(),
    nn.LayerNorm(256),
    nn.Linear(256, 1),
    nn.Sigmoid()
)
登录后复制
登录后复制
2.特征提取

_extract_features 方法计算几个相似特征:

  • 词汇相似度:
    • 编辑率:量化将一个文本转换为另一个文本的编辑(插入、删除、替换)次数。
    • 杰卡德指数:测量两个文本中唯一单词的重叠。
features['levenshtein'] = levenshtein_ratio(text1, text2)
features['jaccard'] = len(set(text1.split()) & set(text2.split())) / len(set(text1.split()) | set(text2.split()))
登录后复制
  • 语音相似度:
    • 元音位编码:比较语音表示。
features['metaphone'] = 1.0 if metaphone(text1) == metaphone(text2) else 0.0
登录后复制
  • 语义相似度:
    • 生成 BERT 嵌入,并计算余弦相似度。
emb1 = self.bert.encode(text1, convert_to_tensor=True)
emb2 = self.bert.encode(text2, convert_to_tensor=True)
features['semantic_cosine'] = nn.CosineSimilarity()(emb1, emb2).item()
登录后复制
  • 语法相似性:
    • TF-IDF 对文本进行矢量化,并使用 TruncatedSVD 应用 LSA。
tfidf_matrix = self.tfidf.fit_transform([text1, text2])
svd = TruncatedSVD(n_components=1)
lsa = svd.fit_transform(tfidf_matrix)
features['lsa_cosine'] = np.dot(lsa[0], lsa[1].T)[0][0]
登录后复制
  • 基于注意力的特征:
    • 多头注意力处理嵌入,并使用平均注意力分数。
att_output, _ = self.attention(
    emb1.unsqueeze(0).unsqueeze(0),
    emb2.unsqueeze(0).unsqueeze(0),
    emb2.unsqueeze(0).unsqueeze(0)
)
features['attention_score'] = att_output.mean().item()
登录后复制
3.神经网络融合

提取的特征被组合并输入到完全连接的神经网络中。该网络输出相似度得分 (0-1)。

import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import TruncatedSVD
from sentence_transformers import SentenceTransformer
from Levenshtein import ratio as levenshtein_ratio
from phonetics import metaphone
import torch
import torch.nn as nn

class HybridSimilarity(nn.Module):
    def __init__(self):
        super().__init__()
        self.bert = SentenceTransformer('all-MiniLM-L6-v2')
        self.tfidf = TfidfVectorizer()
        self.attention = nn.MultiheadAttention(embed_dim=384, num_heads=4)
        self.fc = nn.Sequential(
            nn.Linear(1152, 256),
            nn.ReLU(),
            nn.LayerNorm(256),
            nn.Linear(256, 1),
            nn.Sigmoid()
        )

    def _extract_features(self, text1, text2):
        # Feature Extraction
        features = {}

        # Lexical Analysis
        features['levenshtein'] = levenshtein_ratio(text1, text2)
        features['jaccard'] = len(set(text1.split()) & set(text2.split())) / len(set(text1.split()) | set(text2.split()))

        # Phonetic Analysis
        features['metaphone'] = 1.0 if metaphone(text1) == metaphone(text2) else 0.0

        # Semantic Analysis (BERT)
        emb1 = self.bert.encode(text1, convert_to_tensor=True)
        emb2 = self.bert.encode(text2, convert_to_tensor=True)
        features['semantic_cosine'] = nn.CosineSimilarity()(emb1, emb2).item()

        # Syntactic Analysis (LSA-TFIDF)
        tfidf_matrix = self.tfidf.fit_transform([text1, text2])
        svd = TruncatedSVD(n_components=1)
        lsa = svd.fit_transform(tfidf_matrix)
        features['lsa_cosine'] = np.dot(lsa[0], lsa[1].T)[0][0]

        # Attention Mechanism
        att_output, _ = self.attention(
            emb1.unsqueeze(0).unsqueeze(0), 
            emb2.unsqueeze(0).unsqueeze(0), 
            emb2.unsqueeze(0).unsqueeze(0)
        )
        features['attention_score'] = att_output.mean().item()

        return torch.tensor(list(features.values())).unsqueeze(0)

    def forward(self, text1, text2):
        features = self._extract_features(text1, text2)
        return self.fc(features).item()

def similarity_coefficient(text1, text2):
    model = HybridSimilarity()
    return model(text1, text2)
登录后复制
登录后复制

实际应用

similarity_coefficient 函数初始化模型并计算两个输入文本之间的相似度。

self.bert = SentenceTransformer('all-MiniLM-L6-v2')
self.tfidf = TfidfVectorizer()
self.attention = nn.MultiheadAttention(embed_dim=384, num_heads=4)
self.fc = nn.Sequential(
    nn.Linear(1152, 256),
    nn.ReLU(),
    nn.LayerNorm(256),
    nn.Linear(256, 1),
    nn.Sigmoid()
)
登录后复制
登录后复制

这会返回 0 到 1 之间的浮点数,表示相似度。

结论

HybridSimilarity 算法通过集成文本比较的各个方面,提供了一种稳健的文本相似性方法。 它将词汇、语音、语义和句法分析相结合,可以更全面、更细致地理解文本相似性,使其适用于各种应用,包括重复检测、文本聚类和信息检索。

以上是混合相似度算法的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

<🎜>:泡泡胶模拟器无穷大 - 如何获取和使用皇家钥匙
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系统,解释
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆树的耳语 - 如何解锁抓钩
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1666
14
CakePHP 教程
1426
52
Laravel 教程
1328
25
PHP教程
1273
29
C# 教程
1255
24
Python:游戏,Guis等 Python:游戏,Guis等 Apr 13, 2025 am 12:14 AM

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

Python与C:学习曲线和易用性 Python与C:学习曲线和易用性 Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python和时间:充分利用您的学习时间 Python和时间:充分利用您的学习时间 Apr 14, 2025 am 12:02 AM

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python vs.C:探索性能和效率 Python vs.C:探索性能和效率 Apr 18, 2025 am 12:20 AM

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

Python标准库的哪一部分是:列表或数组? Python标准库的哪一部分是:列表或数组? Apr 27, 2025 am 12:03 AM

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python:自动化,脚本和任务管理 Python:自动化,脚本和任务管理 Apr 16, 2025 am 12:14 AM

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

学习Python:2小时的每日学习是否足够? 学习Python:2小时的每日学习是否足够? Apr 18, 2025 am 12:22 AM

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python vs. C:了解关键差异 Python vs. C:了解关键差异 Apr 21, 2025 am 12:18 AM

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

See all articles