混合相似度算法
深入研究混合相似度算法
本文探讨了 HybridSimilarity 算法,这是一种复杂的神经网络,旨在评估文本对之间的相似性。 这种混合模型巧妙地整合了词汇、语音、语义和句法比较,以获得全面的相似度得分。
import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.decomposition import TruncatedSVD from sentence_transformers import SentenceTransformer from Levenshtein import ratio as levenshtein_ratio from phonetics import metaphone import torch import torch.nn as nn class HybridSimilarity(nn.Module): def __init__(self): super().__init__() self.bert = SentenceTransformer('all-MiniLM-L6-v2') self.tfidf = TfidfVectorizer() self.attention = nn.MultiheadAttention(embed_dim=384, num_heads=4) self.fc = nn.Sequential( nn.Linear(1152, 256), nn.ReLU(), nn.LayerNorm(256), nn.Linear(256, 1), nn.Sigmoid() ) def _extract_features(self, text1, text2): # Feature Extraction features = {} # Lexical Analysis features['levenshtein'] = levenshtein_ratio(text1, text2) features['jaccard'] = len(set(text1.split()) & set(text2.split())) / len(set(text1.split()) | set(text2.split())) # Phonetic Analysis features['metaphone'] = 1.0 if metaphone(text1) == metaphone(text2) else 0.0 # Semantic Analysis (BERT) emb1 = self.bert.encode(text1, convert_to_tensor=True) emb2 = self.bert.encode(text2, convert_to_tensor=True) features['semantic_cosine'] = nn.CosineSimilarity()(emb1, emb2).item() # Syntactic Analysis (LSA-TFIDF) tfidf_matrix = self.tfidf.fit_transform([text1, text2]) svd = TruncatedSVD(n_components=1) lsa = svd.fit_transform(tfidf_matrix) features['lsa_cosine'] = np.dot(lsa[0], lsa[1].T)[0][0] # Attention Mechanism att_output, _ = self.attention( emb1.unsqueeze(0).unsqueeze(0), emb2.unsqueeze(0).unsqueeze(0), emb2.unsqueeze(0).unsqueeze(0) ) features['attention_score'] = att_output.mean().item() return torch.tensor(list(features.values())).unsqueeze(0) def forward(self, text1, text2): features = self._extract_features(text1, text2) return self.fc(features).item() def similarity_coefficient(text1, text2): model = HybridSimilarity() return model(text1, text2)
核心组件
HybridSimilarity 模型依赖于以下关键组件:
- 句子变压器:利用预先训练的变压器模型进行语义嵌入生成。
- Levenshtein Distance: 基于字符级编辑计算词汇相似度。
- 元音位: 确定语音相似性。
- TF-IDF 和截断 SVD: 应用潜在语义分析 (LSA) 来实现语法相似性。
- PyTorch:提供了用于构建具有注意力机制和全连接层的自定义神经网络的框架。
详细分解
1.模型设置
HybridSimilarity
类,扩展 nn.Module
,初始化:
- 一个基于BERT的句子嵌入模型 (
all-MiniLM-L6-v2
)。 - TF-IDF 矢量化器。
- 一个多头注意力机制。
- 一个完全连接的网络来聚合特征并生成最终的相似度分数。
self.bert = SentenceTransformer('all-MiniLM-L6-v2') self.tfidf = TfidfVectorizer() self.attention = nn.MultiheadAttention(embed_dim=384, num_heads=4) self.fc = nn.Sequential( nn.Linear(1152, 256), nn.ReLU(), nn.LayerNorm(256), nn.Linear(256, 1), nn.Sigmoid() )
2.特征提取
_extract_features
方法计算几个相似特征:
- 词汇相似度:
- 编辑率:量化将一个文本转换为另一个文本的编辑(插入、删除、替换)次数。
- 杰卡德指数:测量两个文本中唯一单词的重叠。
features['levenshtein'] = levenshtein_ratio(text1, text2) features['jaccard'] = len(set(text1.split()) & set(text2.split())) / len(set(text1.split()) | set(text2.split()))
- 语音相似度:
- 元音位编码:比较语音表示。
features['metaphone'] = 1.0 if metaphone(text1) == metaphone(text2) else 0.0
- 语义相似度:
- 生成 BERT 嵌入,并计算余弦相似度。
emb1 = self.bert.encode(text1, convert_to_tensor=True) emb2 = self.bert.encode(text2, convert_to_tensor=True) features['semantic_cosine'] = nn.CosineSimilarity()(emb1, emb2).item()
- 语法相似性:
- TF-IDF 对文本进行矢量化,并使用
TruncatedSVD
应用 LSA。
- TF-IDF 对文本进行矢量化,并使用
tfidf_matrix = self.tfidf.fit_transform([text1, text2]) svd = TruncatedSVD(n_components=1) lsa = svd.fit_transform(tfidf_matrix) features['lsa_cosine'] = np.dot(lsa[0], lsa[1].T)[0][0]
- 基于注意力的特征:
- 多头注意力处理嵌入,并使用平均注意力分数。
att_output, _ = self.attention( emb1.unsqueeze(0).unsqueeze(0), emb2.unsqueeze(0).unsqueeze(0), emb2.unsqueeze(0).unsqueeze(0) ) features['attention_score'] = att_output.mean().item()
3.神经网络融合
提取的特征被组合并输入到完全连接的神经网络中。该网络输出相似度得分 (0-1)。
import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.decomposition import TruncatedSVD from sentence_transformers import SentenceTransformer from Levenshtein import ratio as levenshtein_ratio from phonetics import metaphone import torch import torch.nn as nn class HybridSimilarity(nn.Module): def __init__(self): super().__init__() self.bert = SentenceTransformer('all-MiniLM-L6-v2') self.tfidf = TfidfVectorizer() self.attention = nn.MultiheadAttention(embed_dim=384, num_heads=4) self.fc = nn.Sequential( nn.Linear(1152, 256), nn.ReLU(), nn.LayerNorm(256), nn.Linear(256, 1), nn.Sigmoid() ) def _extract_features(self, text1, text2): # Feature Extraction features = {} # Lexical Analysis features['levenshtein'] = levenshtein_ratio(text1, text2) features['jaccard'] = len(set(text1.split()) & set(text2.split())) / len(set(text1.split()) | set(text2.split())) # Phonetic Analysis features['metaphone'] = 1.0 if metaphone(text1) == metaphone(text2) else 0.0 # Semantic Analysis (BERT) emb1 = self.bert.encode(text1, convert_to_tensor=True) emb2 = self.bert.encode(text2, convert_to_tensor=True) features['semantic_cosine'] = nn.CosineSimilarity()(emb1, emb2).item() # Syntactic Analysis (LSA-TFIDF) tfidf_matrix = self.tfidf.fit_transform([text1, text2]) svd = TruncatedSVD(n_components=1) lsa = svd.fit_transform(tfidf_matrix) features['lsa_cosine'] = np.dot(lsa[0], lsa[1].T)[0][0] # Attention Mechanism att_output, _ = self.attention( emb1.unsqueeze(0).unsqueeze(0), emb2.unsqueeze(0).unsqueeze(0), emb2.unsqueeze(0).unsqueeze(0) ) features['attention_score'] = att_output.mean().item() return torch.tensor(list(features.values())).unsqueeze(0) def forward(self, text1, text2): features = self._extract_features(text1, text2) return self.fc(features).item() def similarity_coefficient(text1, text2): model = HybridSimilarity() return model(text1, text2)
实际应用
similarity_coefficient
函数初始化模型并计算两个输入文本之间的相似度。
self.bert = SentenceTransformer('all-MiniLM-L6-v2') self.tfidf = TfidfVectorizer() self.attention = nn.MultiheadAttention(embed_dim=384, num_heads=4) self.fc = nn.Sequential( nn.Linear(1152, 256), nn.ReLU(), nn.LayerNorm(256), nn.Linear(256, 1), nn.Sigmoid() )
这会返回 0 到 1 之间的浮点数,表示相似度。
结论
HybridSimilarity 算法通过集成文本比较的各个方面,提供了一种稳健的文本相似性方法。 它将词汇、语音、语义和句法分析相结合,可以更全面、更细致地理解文本相似性,使其适用于各种应用,包括重复检测、文本聚类和信息检索。
以上是混合相似度算法的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。
