首页 > 后端开发 > php教程 > 最高峰地图

最高峰地图

Barbara Streisand
发布: 2025-01-23 02:23:09
原创
320 人浏览过

1765。最高峰地图

难度:中等

主题:数组、广度优先搜索、矩阵

给定一个大小为 m x n 的整数矩阵 isWater,它表示 landwater 单元格的地图。

  • 如果 isWater[i][j] == 0,则单元格 (i, j) 是陆地单元格。
  • 如果 isWater[i][j] == 1,则单元格 (i, j) 是水单元格。

您必须按照以下规则为每个单元格分配高度:

  • 每个单元格的高度必须为非负数。
  • 如果单元格是单元格,则其高度必须为 0。
  • 任何两个相邻单元格的绝对高度差必须最多 1。如果一个单元格位于另一个单元格的正北、东、南或西方向,则该单元格与另一个单元格相邻(即,他们的侧面接触)。

找到一个高度分配,使得矩阵中的最大高度为最大化.

返回大小为 m x n 的整数矩阵高度,其中 height[i][j] 是单元格 (i, j) 的高度。如果有多个解决方案,则返回其中任何

示例1:

最高峰地图

  • 输入: isWater = [[0,1],[0,0]]
  • 输出: [[1,0],[2,1]]
  • 说明: 图像显示了每个单元格的指定高度。
    • 蓝色单元格是水单元格,绿色单元格是陆地单元格。

示例2:

最高峰地图

  • 输入: isWater = [[0,0,1],[1,0,0],[0,0,0]]
  • 输出: [[1,1,0],[0,1,1],[1,2,2]]
  • 解释: 高度 2 是任何分配的最大可能高度。
    • 任何最大高度为 2 且仍符合规则的高度分配也将被接受。

示例 3:

  • 输入: isWater = [[1,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,1,0, 0,0,0,0,0,0,1,0,0,1,0,1,1,0,0,1,0 ,1,0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0 ,1,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0, 0,0,1,1,0,0,0,1,0,0,1,0,1,1,0,0,0,1,0,1,1,1,0,0,1, 0,0,0,1,1,0,1,0,0,0,1,0,0,1,0,0,0 ,0,1,0,1,0,1,1,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,1,0,0 ,1,0,0,1,0,1,0,1,0,1,1,0,0,0,0,0, 0,0,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0, 0,0,0,0,0,1,0,1,1,1,0,0,1,0,0,0,0 ,0,1,0,0,0,0,1,0,0,1,0,0],[1,1,0,0,0,0,0,1,0,0,0,1 ,0,0,0,1,1,0,0,1,0,0,1,1,0,1,1,0, 0,1,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,1,0,1, 0,0,1,1,0,0,0,1,0,0,0,1,1,0,1,0,1 ,0,0,0,1,0,0,1,1,1,1,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0 ,1,1,0,0,1,0,1,0,0,0,0,1,0,1,0,1, 1,0,0,0,1,1,1,1,0,0,0,1,0,1,0,0,0,0,1,1,1,0,1,0,0, 0,0,0,1,0,1,0,0,1,0,0,0,0,1,0,1,1 ,0,0,0,1,1,1,0,0,0,1,1,0,0,1,0,1,0,0,0,0,1,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0, 1,0,1,1,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0] ,[0,0,1,1,0,0,1,0,0,0,0,1,0,0,0,1 ,0,1,0,1,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0 ,0,0,0,0,0,1,0,1,0,1,0,0,0,0,1,0, 0,0,1,0,0,0,1,1,0,0,1,0,0,1,0,0,1,0,0,0,0,1,0,1,0, 0,0,0,1,1,1,1,0,0,1,1,0,0,1,0,0,1 ,0,0,0,0,0,1,0,1,0,1,0,1,0,1,1,0,0,0,0,0,0,0,0,1,0 ,0,0,0,0,1,1,1,1,0,0,0,0,0,1,0,0, 1,0,0,0,0,1,1,1,1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,1, 0,0,0,1,0,0,0,0,0,1,0,1,1,1,1,1,1 ,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,1,0,0,1,0,0,0,0,0,1 ,0,1,1,0,0,0,0,1,0,1,0,0],...]
  • 输出: [[0,1,2,2,2,1,0,1,1,0,1,1,0,1,2,1,1,2,2,1,1,0,0,1, 2,1,1,2,2,1,0 ,1,1,0,1,0,0,1,1,0,1,0,1,2,2,1,1,1,0,1,1,1,0,0,1,1 ,1,2,1,0,1,2, 3,2,1,1,0,1,1,0,1,2,2,1,2,2,1,0,1,1,0,1,2,1,0,0,1, 2,1,0,1,1,0,1 ,0,0,1,2,1,0,1,0,0,0,1,1,0,1,1,1,0,0,1,0,1,1,1,0,1 ,1,0,1,1,2,1, 0,1,0,1,0,0,1,2,1,2,3,3,2,2,1,0,0,0,1,1,1,0,1,1,0, 1,1,0,1,0,1,0 ,1,0,0,1,2,1,1,2,2,1,0,0,0,1,0,1,1,2,3,2,2,2,2,2,2 ,3,2,3,3,2,1, 0,1,2,1,1,2,1,0,1,0,0,0,1,1,0,1,2,3,2,1,0,1,2,1,1, 0,1,1,0,1,2], [0,0,1,1,2,2,1,0,1,1,1,0,1,2,1,0,0,1,1,0,1,1,0,0,1 ,0,0,1,1,0,0, 1,1,1,0,1,1,1,1,0,1,1,2,2,1,0,0,1,1,1,0,1,0,1,1,0, 0,1,2,1,0,1,2 ,1,0,0,1,0,1,0,1,2,1,0,1,1,0,0,0,0,1,2,3,2,1,1,0,1 ,1,1,1,0,1,0, 1,0,0,1,1,0,1,0,1,1,1,1,0,1,0,1,0,0,1,1,1,0,0,0,0, 1,1,1,0,1,0,1 ,2,1,1,0,0,0,1,0,1,2,2,1,1,0,1,0,1,1,0,1,1,1,1,0,1 ,0,0,1,1,1,0, 0,0,1,2,1,0,0,1,1,0,1,0,1,2,1,1,0,1,2,1,1,1,1,1,1, 2,1,2,3,3,2,1 ,0,1,0,0,1,0,1,0,0,1,0,1,2,1,2,3,2,1,1,0,1,1,0,1,0 ,1,2,1,2,3],[ 1,1,0,0,1,1,0,1,1,2,1,0,1,1,1,0,1,0,1,0,1,1,0,1,2, 1,1,0,1,1,1,1 ,0,1,1,2,1,0,1,1,2,1,2,2,1,1,0,1,0,1,0,1,1,2,1,0,1 ,2,1,...]]

约束:

  • m == isWater.length
  • n == isWater[i].length
  • 1
  • isWater[i][j] 是 0 或 1。
  • 至少有一个个水细胞。

提示:

  1. 将每个水单元设置为 0。每个单元的高度受其最近的水单元的限制。
  2. 以所有水细胞为源执行多源 BFS。

注意:本题与542.01矩阵相同

解决方案:

我们可以使用广度优先搜索(BFS)方法。以下是我们如何逐步实现它:

问题分解:

  1. 水细胞:带有1的细胞代表水细胞,其高度始终为0。
  2. 陆地单元:带有 0 的单元代表陆地单元,其高度应指定为使得相邻陆地单元的高度差最多为 1。

方法:

  1. BFS 初始化:

    • 我们首先将所有水单元格(值为 1 的单元格)标记为 BFS 中的起点,并将它们的高度指定为 0。
    • 然后我们处理邻近的陆地单元(值为 0 的单元)以分配高度。
  2. BFS 遍历:

    • 从每个水单元开始,我们向外扩展,将每个相邻的陆地单元的高度增加 1,确保相邻单元之间的高度差永远不会超过 1。
    • 我们继续这个过程,直到访问完所有单元格。
  3. 结果:结果将是遵循给定规则的高度矩阵,其中高度值最大化。

让我们用 PHP 实现这个解决方案:1765。最高峰地图

<?php /**
 * @param Integer[][] $isWater
 * @return Integer[][]
 */
function highestPeak($isWater) {
    ...
    ...
    ...
    /**
     * go to ./solution.php
     */
}

// Example usage:
$$isWater1 = [[0,1],[0,0]];
$$isWater2 = [[0,0,1],[1,0,0],[0,0,0]];
$$isWater3 = [[1,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,1,0,1,1,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,1,1,0,0,0,1,0,0,1,0,1,1,0,0,0,1,0,1,1,1,0,0,1,0,0,0,1,1,0,1,0,0,0,1,0,0,1,0,0,0,0,1,0,1,0,1,1,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,1,0,0,1,0,0,1,0,1,0,1,0,1,1,0,0,0,0,0,0,0,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,1,0,0],[1,1,0,0,0,0,0,1,0,0,0,1,0,0,0,1,1,0,0,1,0,0,1,1,0,1,1,0,0,1,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,1,0,1,0,0,1,1,0,0,0,1,0,0,0,1,1,0,1,0,1,0,0,0,1,0,0,1,1,1,1,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,1,1,0,0,1,0,1,0,0,0,0,1,0,1,0,1,1,0,0,0,1,1,1,1,0,0,0,1,0,1,0,0,0,0,1,1,1,0,1,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,1,0,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,1,0,1,1,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0],[0,0,1,1,0,0,1,0,0,0,0,1,0,0,0,1,0,1,0,1,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,1,0,0,0,1,0,0,0,1,1,0,0,1,0,0,1,0,0,1,0,0,0,0,1,0,1,0,0,0,0,1,1,1,1,0,0,1,1,0,0,1,0,0,1,0,0,0,0,0,1,0,1,0,1,0,1,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,1,0,0,0,0,0,1,0,0,1,0,0,0,0,1,1,1,1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0,1,0,1,1,1,1,1,1,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,1,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0,1,0,1,0,0],...];

echo highestPeak($$isWater1) . "\n"; // Output: [[1,0],[2,1]]
echo highestPeak($$isWater2) . "\n"; // Output: [[1,1,0],[0,1,1],[1,2,2]]
echo highestPeak($$isWater3) . "\n"; // Output: [[0,1,2,2,2,1,0,1,1,0,1,1,0,1,2,1,1,2,2,1,1,0,0,1,2,1,1,2,2,1,0,1,1,0,1,0,0,1,1,0,1,0,1,2,2,1,1,1,0,1,1,1,0,0,1,1,1,2,1,0,1,2,3,2,1,1,0,1,1,0,1,2,2,1,2,2,1,0,1,1,0,1,2,1,0,0,1,2,1,0,1,1,0,1,0,0,1,2,1,0,1,0,0,0,1,1,0,1,1,1,0,0,1,0,1,1,1,0,1,1,0,1,1,2,1,0,1,0,1,0,0,1,2,1,2,3,3,2,2,1,0,0,0,1,1,1,0,1,1,0,1,1,0,1,0,1,0,1,0,0,1,2,1,1,2,2,1,0,0,0,1,0,1,1,2,3,2,2,2,2,2,2,3,2,3,3,2,1,0,1,2,1,1,2,1,0,1,0,0,0,1,1,0,1,2,3,2,1,0,1,2,1,1,0,1,1,0,1,2],[0,0,1,1,2,2,1,0,1,1,1,0,1,2,1,0,0,1,1,0,1,1,0,0,1,0,0,1,1,0,0,1,1,1,0,1,1,1,1,0,1,1,2,2,1,0,0,1,1,1,0,1,0,1,1,0,0,1,2,1,0,1,2,1,0,0,1,0,1,0,1,2,1,0,1,1,0,0,0,0,1,2,3,2,1,1,0,1,1,1,1,0,1,0,1,0,0,1,1,0,1,0,1,1,1,1,0,1,0,1,0,0,1,1,1,0,0,0,0,1,1,1,0,1,0,1,2,1,1,0,0,0,1,0,1,2,2,1,1,0,1,0,1,1,0,1,1,1,1,0,1,0,0,1,1,1,0,0,0,1,2,1,0,0,1,1,0,1,0,1,2,1,1,0,1,2,1,1,1,1,1,1,2,1,2,3,3,2,1,0,1,0,0,1,0,1,0,0,1,0,1,2,1,2,3,2,1,1,0,1,1,0,1,0,1,2,1,2,3],[1,1,0,0,1,1,0,1,1,2,1,0,1,1,1,0,1,0,1,0,1,1,0,1,2,1,1,0,1,1,1,1,0,1,1,2,1,0,1,1,2,1,2,2,1,1,0,1,0,1,0,1,1,2,1,0,1,2,1,...]]
?>
登录后复制

解释:

  1. 初始化:

    • 我们将所有单元格的高度矩阵初始化为 -1。水细胞立即设置为 0。
    • 水细胞被排入 BFS 队列。
  2. BFS:

    • 我们通过使每个单元出列来处理队列,并且对于其每个相邻单元,我们检查它是否在边界内并且未被访问。
    • 如果它是有效的陆地单元(未访问过),我们会为其分配比当前单元高度大一的高度,并将其排队以进行进一步处理。
  3. 结果

    • BFS 完成后,高度矩阵将包含每个单元格的最高可能高度,尊重给定的约束。

时间复杂度:

  • O(m * n) 其中 m 是行数,n 是列数。这是因为在 BFS 遍历过程中每个单元最多被处理一次。

该解决方案确保矩阵填充正确的高度,并且 BFS 保证每个单元格的最大高度,同时保持相邻单元格之间的高度差约束。

联系链接

如果您发现本系列有帮助,请考虑在 GitHub 上给 存储库 一个星号或在您最喜欢的社交网络上分享该帖子?。您的支持对我来说意义重大!

如果您想要更多类似的有用内容,请随时关注我:

  • 领英
  • GitHub

以上是最高峰地图的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
作者最新文章
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板