目录
为什么在浏览器中运行 NLP 模型?
关于 DeepSeek-R1
设置您的项目
先决条件
实现细节
关键点
结论
首页 web前端 js教程 在浏览器中运行 DeepSeek-Rn:综合指南

在浏览器中运行 DeepSeek-Rn:综合指南

Jan 23, 2025 pm 10:38 PM

Running DeepSeek-Rn the Browser: A Comprehensive Guide

随着人工智能技术的不断发展,直接在浏览器中运行复杂的机器学习模型正变得越来越可行。本指南将引导您学习如何使用 JavaScript 在浏览器中加载和使用 DeepSeek-R1 模型。我们还将介绍基于此处提供的示例的实现细节。

为什么在浏览器中运行 NLP 模型?

传统上,自然语言处理 (NLP) 模型部署在服务器端,需要互联网连接才能发送请求和接收响应。但是,随着 WebGPU 和 ONNX.js 等技术的进步,现在可以在浏览器中直接运行 DeepSeek-R1 等高级模型。其优势包括:

  • 增强隐私性:用户数据不会离开其设备。
  • 降低延迟:消除了与服务器通信相关的延迟。
  • 离线可用性:即使没有互联网连接也能运行。

关于 DeepSeek-R1

DeepSeek-R1 是一款轻量级且高效的 NLP 模型,经过优化可在设备上进行推理。它在保持较小占用空间的同时,提供高质量的文本处理能力,使其成为浏览器环境的理想选择。

设置您的项目

先决条件

要开始在浏览器中运行 DeepSeek-R1 模型,您需要:

  • 支持 WebGPU/WebGL 的现代浏览器。
  • 用于在 JavaScript 中执行 transformers 模型的 @huggingface/transformers 库。
  • 包含加载和处理 DeepSeek-R1 模型逻辑的脚本文件。

演示:试试看!

实现细节

以下是关于如何在浏览器中加载和使用 DeepSeek-R1 模型的分步指南:

import {
  AutoTokenizer,
  AutoModelForCausalLM,
  TextStreamer,
  InterruptableStoppingCriteria,
} from "@huggingface/transformers";

/**
 * 用于执行 WebGPU 功能检测的辅助函数
 */
async function check() {
  try {
    const adapter = await navigator.gpu.requestAdapter();
    if (!adapter) {
      throw new Error("WebGPU 不受支持(未找到适配器)");
    }
  } catch (e) {
    self.postMessage({
      status: "error",
      data: e.toString(),
    });
  }
}

/**
 * 此类使用单例模式来启用模型的延迟加载
 */
class TextGenerationPipeline {
  static model_id = "onnx-community/DeepSeek-R1-Distill-Qwen-1.5B-ONNX";

  static async getInstance(progress_callback = null) {
    if (!this.tokenizer) {
      this.tokenizer = await AutoTokenizer.from_pretrained(this.model_id, {
        progress_callback,
      });
    }

    if (!this.model) {
      this.model = await AutoModelForCausalLM.from_pretrained(this.model_id, {
        dtype: "q4f16",
        device: "webgpu",
        progress_callback,
      });
    }

    return [this.tokenizer, this.model];
  }
}

const stopping_criteria = new InterruptableStoppingCriteria();

let past_key_values_cache = null;

async function generate(messages) {
  // 获取文本生成管道。
  const [tokenizer, model] = await TextGenerationPipeline.getInstance();

  const inputs = tokenizer.apply_chat_template(messages, {
    add_generation_prompt: true,
    return_dict: true,
  });

  const [START_THINKING_TOKEN_ID, END_THINKING_TOKEN_ID] = tokenizer.encode(
    "<think></think>",
    { add_special_tokens: false },
  );

  let state = "thinking"; // 'thinking' 或 'answering'
  let startTime;
  let numTokens = 0;
  let tps;

  const token_callback_function = (tokens) => {
    startTime ??= performance.now();

    if (numTokens++ > 0) {
      tps = (numTokens / (performance.now() - startTime)) * 1000;
    }
    if (tokens[0] === END_THINKING_TOKEN_ID) {
      state = "answering";
    }
  };

  const callback_function = (output) => {
    self.postMessage({
      status: "update",
      output,
      tps,
      numTokens,
      state,
    });
  };

  const streamer = new TextStreamer(tokenizer, {
    skip_prompt: true,
    skip_special_tokens: true,
    callback_function,
    token_callback_function,
  });

  // 通知主线程我们已开始
  self.postMessage({ status: "start" });

  const { past_key_values, sequences } = await model.generate({
    ...inputs,
    do_sample: false,
    max_new_tokens: 2048,
    streamer,
    stopping_criteria,
    return_dict_in_generate: true,
  });

  past_key_values_cache = past_key_values;

  const decoded = tokenizer.batch_decode(sequences, {
    skip_special_tokens: true,
  });

  // 将输出发送回主线程
  self.postMessage({
    status: "complete",
    output: decoded,
  });
}

async function load() {
  self.postMessage({
    status: "loading",
    data: "正在加载模型...",
  });

  // 加载管道并将其保存以供将来使用。
  const [tokenizer, model] = await TextGenerationPipeline.getInstance((x) => {
    self.postMessage(x);
  });

  self.postMessage({
    status: "loading",
    data: "正在编译着色器并预热模型...",
  });

  // 使用虚拟输入运行模型以编译着色器
  const inputs = tokenizer("a");
  await model.generate({ ...inputs, max_new_tokens: 1 });
  self.postMessage({ status: "ready" });
}

// 监听来自主线程的消息
self.addEventListener("message", async (e) => {
  const { type, data } = e.data;

  switch (type) {
    case "check":
      check();
      break;

    case "load":
      load();
      break;

    case "generate":
      stopping_criteria.reset();
      generate(data);
      break;

    case "interrupt":
      stopping_criteria.interrupt();
      break;

    case "reset":
      past_key_values_cache = null;
      stopping_criteria.reset();
      break;
  }
});
登录后复制

关键点

  1. 功能检测check 函数执行功能检测以确保 WebGPU 支持。
  2. 单例模式TextGenerationPipeline 类确保仅加载一次分词器和模型,避免冗余初始化。
  3. 模型加载getInstance 方法从预训练源加载分词器和模型,支持进度回调。
  4. 推理generate 函数处理输入并生成文本输出,使用 TextStreamer 流式传输标记。
  5. 通信:工作线程监听来自主线程的消息,并根据消息类型(例如,“check”、“load”、“generate”、“interrupt”、“reset”)执行相应的操作。

结论

在浏览器中运行 DeepSeek-R1 等 NLP 模型标志着在增强用户体验和保护数据隐私方面取得了重大进展。只需几行 JavaScript 代码和 @huggingface/transformers 库的功能,您就可以开发出响应迅速且功能强大的应用程序。无论您是构建交互式工具还是智能助手,基于浏览器的 NLP 都可能改变游戏规则。

探索 DeepSeek-R1 在浏览器中的潜力,并立即开始创建更智能的前端应用程序!

本指南全面概述了如何在浏览器环境中加载和使用 DeepSeek-R1 模型,并提供了详细的代码示例。有关更具体的实现细节,请参考链接的 GitHub 存储库。

This revised output maintains the original image and its format, rephrases sentences, and uses synonyms to achieve pseudo-originality while preserving the original meaning. The code block is unchanged as it's not considered text for rewriting purposes in this context.

以上是在浏览器中运行 DeepSeek-Rn:综合指南的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

<🎜>:泡泡胶模拟器无穷大 - 如何获取和使用皇家钥匙
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系统,解释
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆树的耳语 - 如何解锁抓钩
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1667
14
CakePHP 教程
1426
52
Laravel 教程
1328
25
PHP教程
1273
29
C# 教程
1255
24
JavaScript引擎:比较实施 JavaScript引擎:比较实施 Apr 13, 2025 am 12:05 AM

不同JavaScript引擎在解析和执行JavaScript代码时,效果会有所不同,因为每个引擎的实现原理和优化策略各有差异。1.词法分析:将源码转换为词法单元。2.语法分析:生成抽象语法树。3.优化和编译:通过JIT编译器生成机器码。4.执行:运行机器码。V8引擎通过即时编译和隐藏类优化,SpiderMonkey使用类型推断系统,导致在相同代码上的性能表现不同。

Python vs. JavaScript:学习曲线和易用性 Python vs. JavaScript:学习曲线和易用性 Apr 16, 2025 am 12:12 AM

Python更适合初学者,学习曲线平缓,语法简洁;JavaScript适合前端开发,学习曲线较陡,语法灵活。1.Python语法直观,适用于数据科学和后端开发。2.JavaScript灵活,广泛用于前端和服务器端编程。

从C/C到JavaScript:所有工作方式 从C/C到JavaScript:所有工作方式 Apr 14, 2025 am 12:05 AM

从C/C 转向JavaScript需要适应动态类型、垃圾回收和异步编程等特点。1)C/C 是静态类型语言,需手动管理内存,而JavaScript是动态类型,垃圾回收自动处理。2)C/C 需编译成机器码,JavaScript则为解释型语言。3)JavaScript引入闭包、原型链和Promise等概念,增强了灵活性和异步编程能力。

JavaScript和Web:核心功能和用例 JavaScript和Web:核心功能和用例 Apr 18, 2025 am 12:19 AM

JavaScript在Web开发中的主要用途包括客户端交互、表单验证和异步通信。1)通过DOM操作实现动态内容更新和用户交互;2)在用户提交数据前进行客户端验证,提高用户体验;3)通过AJAX技术实现与服务器的无刷新通信。

JavaScript在行动中:现实世界中的示例和项目 JavaScript在行动中:现实世界中的示例和项目 Apr 19, 2025 am 12:13 AM

JavaScript在现实世界中的应用包括前端和后端开发。1)通过构建TODO列表应用展示前端应用,涉及DOM操作和事件处理。2)通过Node.js和Express构建RESTfulAPI展示后端应用。

了解JavaScript引擎:实施详细信息 了解JavaScript引擎:实施详细信息 Apr 17, 2025 am 12:05 AM

理解JavaScript引擎内部工作原理对开发者重要,因为它能帮助编写更高效的代码并理解性能瓶颈和优化策略。1)引擎的工作流程包括解析、编译和执行三个阶段;2)执行过程中,引擎会进行动态优化,如内联缓存和隐藏类;3)最佳实践包括避免全局变量、优化循环、使用const和let,以及避免过度使用闭包。

Python vs. JavaScript:社区,图书馆和资源 Python vs. JavaScript:社区,图书馆和资源 Apr 15, 2025 am 12:16 AM

Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

Python vs. JavaScript:开发环境和工具 Python vs. JavaScript:开发环境和工具 Apr 26, 2025 am 12:09 AM

Python和JavaScript在开发环境上的选择都很重要。1)Python的开发环境包括PyCharm、JupyterNotebook和Anaconda,适合数据科学和快速原型开发。2)JavaScript的开发环境包括Node.js、VSCode和Webpack,适用于前端和后端开发。根据项目需求选择合适的工具可以提高开发效率和项目成功率。

See all articles