>微调大语模型(LLMS),例如Bert,Llama,Bart,以及Mistral AI和其他人的 该解决方案涉及使用Google驱动器存储中间结果和模型检查点。 这可以确保您的工作仍然存在,即使在Colab环境重置之后。 您需要一个具有足够驱动空间的Google帐户。 在驱动器中创建两个文件夹:“数据”(用于培训数据集)和“检查点”(用于存储模型检查点)。 >在COLAB中安装Google Drive: 首先使用此命令将Google Drive安装在Colab笔记本中:
>
解决方案的核心在于创建功能以保存和加载模型检查点。 这些功能将序列您的模型的状态,优化器,调度程序和其他相关信息。
保存检查点函数:
>
将这些功能集成到您的培训循环中。循环在开始培训之前应检查现有检查点。如果找到了检查站,它将恢复从保存的时期进行的培训。>
即使Colab会话终止,这种结构也可以无缝恢复训练。 请记住要调整 )。from google.colab import drive
drive.mount('/content/drive')
!ls /content/drive/MyDrive/data
!ls /content/drive/MyDrive/checkpoints
import torch
import os
def save_checkpoint(epoch, model, optimizer, scheduler, loss, model_name, overwrite=True):
checkpoint = {
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'loss': loss
}
direc = get_checkpoint_dir(model_name) #Assumed function to construct directory path
if overwrite:
file_path = os.path.join(direc, 'checkpoint.pth')
else:
file_path = os.path.join(direc, f'epoch_{epoch}_checkpoint.pth')
os.makedirs(direc, exist_ok=True) # Create directory if it doesn't exist
torch.save(checkpoint, file_path)
print(f"Checkpoint saved at epoch {epoch}")
#Example get_checkpoint_dir function (adapt to your needs)
def get_checkpoint_dir(model_name):
return os.path.join("/content/drive/MyDrive/checkpoints", model_name)
import torch
import os
def load_checkpoint(model_name, model, optimizer, scheduler):
direc = get_checkpoint_dir(model_name)
if os.path.exists(direc):
#Find checkpoint with highest epoch (adapt to your naming convention)
checkpoints = [f for f in os.listdir(direc) if f.endswith('.pth')]
if checkpoints:
latest_checkpoint = max(checkpoints, key=lambda x: int(x.split('_')[-2]) if '_' in x else 0)
file_path = os.path.join(direc, latest_checkpoint)
checkpoint = torch.load(file_path, map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
epoch = checkpoint['epoch']
loss = checkpoint['loss']
print(f"Checkpoint loaded from epoch {epoch}")
return epoch, loss
else:
print("No checkpoints found in directory.")
return 0, None
else:
print(f"No checkpoint directory found for {model_name}, starting from epoch 1.")
return 0, None
EPOCHS = 10
for exp in experiments: # Assuming 'experiments' is a list of your experiment configurations
model, optimizer, scheduler = initialise_model_components(exp) # Your model initialization function
train_loader, val_loader = generate_data_loaders(exp) # Your data loader function
start_epoch, prev_loss = load_checkpoint(exp, model, optimizer, scheduler)
for epoch in range(start_epoch, EPOCHS):
print(f'Epoch {epoch + 1}/{EPOCHS}')
# YOUR TRAINING CODE HERE... (training loop)
save_checkpoint(epoch + 1, model, optimizer, scheduler, train_loss, exp) #Save after each epoch
以上是培训语言模型在Google Colab上的详细内容。更多信息请关注PHP中文网其他相关文章!