O3-Mini
>已证明是Openai的编码和推理最先进的模型。在大多数标准的基准测试中,O3-Mini(高)模型单枪匹马胜过其他现有模型,例如DeepSeek-R1和Claude 3.5。因此,由O3-Mini提供支持的Chatgpt现在已成为开发人员的日常伴侣。它为他们提供了一种解决编程挑战的智能和有效方法,例如调试,代码生成,文档或数据清洁。本文列出了10个CHATGPT提示,可以帮助您解锁O3-Mini在编码任务中的全部潜力。所以,让我们开始!
> 内容表
>改进生成正则表达式(REGEX)
>>协助进行数据清洁和处理 编写自动化的shell脚本
>>常见问题 1。调试代码错误
>假设您正在为Web应用程序创作Python脚本,突然间,您遇到了一个不了解的错误。追溯消息很长,令人困惑,您不确定如何修复它。 O3-Mini提供了一种快速调试问题并了解出了什么问题的方法。<em>import pandas as pd # Sample data data = { "Product": ["Laptop", "Headphones", "Smartphone", "Monitor", "Mouse"], "Category": ["Electronics", "Electronics", "Electronics", "Accessories", "Accessories"], "Sales": ["00", "0", "0", "0", ""] # Sales values contain a '$' sign } df = pd.DataFrame(data) # Convert Sales column to float df["Sales"] = df["Sales"].astype(float) # ? This line throws a ValueError # Calculate total sales per category total_sales = df.groupby("Category")["Sales"].sum() print(total_sales)</em>
>>模板提示:
“我有一块python代码,该代码正在丢弃错误:attributeError:'nontype'对象没有属性'group'。你能帮我调试吗?
代码的输出import pandas as pd # Sample data data = { "Product": ["Laptop", "Headphones", "Smartphone", "Monitor", "Mouse"], "Category": ["Electronics", "Electronics", "Electronics", "Accessories", "Accessories"], "Sales": ["00", "0", "0", "0", ""] # Sales values contain a '$' sign } df = pd.DataFrame(data) # Convert Sales column to float after stripping '$' df["Sales"] = df["Sales"].str.replace("$", "").astype(float) # ✅ Fixed: Removed currency symbols # Calculate total sales per category total_sales = df.groupby("Category")["Sales"].sum() print(total_sales)
:
:
2。创建代码模板
>当您手头有一个新项目时,通常会在从哪里开始时会感到困惑。可能有不同的方法或涉及多个步骤,或者可能需要您不熟悉的库。在这种情况下,O3-Mini可以帮助您开始使用基本的代码模板,并指导您编写整个代码。
模板提示:“您可以提供一个结构化的模板和指南,用于编写[task]的[语言]项目?
示例提示:
> o3-mini的响应:
>
模板提示:“在保持逻辑和功能时,您可以将此[源语言]代码转换为[目标语言]吗?
示例提示:
“在保持其逻辑和功能时,您可以将此Python代码转换为JavaScript(Node.js)吗? 代码的输出
:
<em>import pandas as pd # Sample data data = { "Product": ["Laptop", "Headphones", "Smartphone", "Monitor", "Mouse"], "Category": ["Electronics", "Electronics", "Electronics", "Accessories", "Accessories"], "Sales": ["00", "0", "0", "0", ""] # Sales values contain a '$' sign } df = pd.DataFrame(data) # Convert Sales column to float df["Sales"] = df["Sales"].astype(float) # ? This line throws a ValueError # Calculate total sales per category total_sales = df.groupby("Category")["Sales"].sum() print(total_sales)</em>
> o3-mini的响应:
:
4。改善代码可读性
> >>模板提示:
“您可以为此[语言]函数生成docstrings and评论吗?[插入代码]
>或
“您可以在处理用户输入并更新数据库的python函数中添加Docstrings和注释吗?
> o3-mini的响应:
5。编写边缘案例的代码和错误处理 >您是在Python中提出API请求,但是您的代码无法处理请求失败的情况。您需要添加错误处理以使其更加健壮。
模板提示:
示例提示:
<em>from collections import Counter # Sample text input text = """ This is a sample text. This text is meant to test word frequency. Some words appear more than once, some words appear only once. """ # Convert to lowercase and split into words words = text.lower().split() # Count word occurrences word_counts = Counter(words) # Print results for word, count in word_counts.items(): print(f"{word}: {count}")</em>
“您可以在此Python函数中添加适当的错误处理吗?
> o3-mini的响应:// Sample text input let text = ` This is a sample text. This text is meant to test word frequency. Some words appear more than once, some words appear only once. `; // Convert to lowercase and split into words let words = text.toLowerCase().replace(/[^\w\s]/g, "").split(/\s+/); // Count word occurrences let wordCounts = new Map(); words.forEach(word => { wordCounts.set(word, (wordCounts.get(word) || 0) + 1); }); // Print results wordCounts.forEach((count, word) => { console.log(`${word}: ${count}`); });
<em>import pandas as pd # Sample data data = { "Product": ["Laptop", "Headphones", "Smartphone", "Monitor", "Mouse"], "Category": ["Electronics", "Electronics", "Electronics", "Accessories", "Accessories"], "Sales": ["00", "0", "0", "0", ""] # Sales values contain a '$' sign } df = pd.DataFrame(data) # Convert Sales column to float df["Sales"] = df["Sales"].astype(float) # ? This line throws a ValueError # Calculate total sales per category total_sales = df.groupby("Category")["Sales"].sum() print(total_sales)</em>
>让我们假设您的团队正在部署Node.js应用程序,并且已分配了设置自动化CI/CD管道的任务。您需要配置GitHub操作以运行测试并在将更改推到主分支时部署应用程序。这是一个简单的提示,您可以在O3-Mini上使用来设置部署管道。
>模板提示:>“您可以使用[CI/CD工具:GitHub Actions,Jenkins等]生成[技术堆栈:React,Mongodb,Node.js等]的CI/CD管道配置,以运行测试和部署[github Actions,Jenkins等]
示例提示:
“您可以使用github操作为node.js项目生成CI/CD管道配置
> o3-mini的响应:7。代码优化和性能改进
您是否曾经在Python功能正常工作但在大型数据集上缓慢运行的情况?如果这是完成工作的障碍,那么O3-Mini可以帮助您优化代码以提高执行效率。> >
>模板提示:import pandas as pd # Sample data data = { "Product": ["Laptop", "Headphones", "Smartphone", "Monitor", "Mouse"], "Category": ["Electronics", "Electronics", "Electronics", "Accessories", "Accessories"], "Sales": ["00", "0", "0", "0", ""] # Sales values contain a '$' sign } df = pd.DataFrame(data) # Convert Sales column to float after stripping '$' df["Sales"] = df["Sales"].str.replace("$", "").astype(float) # ✅ Fixed: Removed currency symbols # Calculate total sales per category total_sales = df.groupby("Category")["Sales"].sum() print(total_sales)
“您可以优化此Python代码的性能吗?目前,它在检查质数时效率低下,并且在搜索大范围内的素数(例如1至100,000)时会缓慢运行。
> o3-mini的响应:
代码的输出 :
<em>from collections import Counter # Sample text input text = """ This is a sample text. This text is meant to test word frequency. Some words appear more than once, some words appear only once. """ # Convert to lowercase and split into words words = text.lower().split() # Count word occurrences word_counts = Counter(words) # Print results for word, count in word_counts.items(): print(f"{word}: {count}")</em>
8。生成正则表达式(REGEX)
O3-Mini在代码中生成正则表达式非常有帮助。假设您正在为网站构建表单验证系统,并且需要一个正则模式来验证电子邮件地址。只需要求O3 Mini使用此提示来生成正则模式。// Sample text input let text = ` This is a sample text. This text is meant to test word frequency. Some words appear more than once, some words appear only once. `; // Convert to lowercase and split into words let words = text.toLowerCase().replace(/[^\w\s]/g, "").split(/\s+/); // Count word occurrences let wordCounts = new Map(); words.forEach(word => { wordCounts.set(word, (wordCounts.get(word) || 0) + 1); }); // Print results wordCounts.forEach((count, word) => { console.log(`${word}: ${count}`); });
模板提示:“您能以[task]的语言]生成一个正则表达式?
示例提示:
> o3-mini的响应:
:
>在分析熊猫中的客户销售数据时,您经常以多种格式遇到混乱的数据集,缺失值,重复条目和数据。在运行分析之前,在O3-Mini上使用以下提示是清洁数据的有效方法。
>>模板提示:
“您能否帮助使用python和pandas?
> o3-mini的响应:
<em>import pandas as pd # Sample data data = { "Product": ["Laptop", "Headphones", "Smartphone", "Monitor", "Mouse"], "Category": ["Electronics", "Electronics", "Electronics", "Accessories", "Accessories"], "Sales": ["00", "0", "0", "0", ""] # Sales values contain a '$' sign } df = pd.DataFrame(data) # Convert Sales column to float df["Sales"] = df["Sales"].astype(float) # ? This line throws a ValueError # Calculate total sales per category total_sales = df.groupby("Category")["Sales"].sum() print(total_sales)</em>
代码的输出 :
>我敢肯定,当我说我们的许多工作本质上是重复性的时,您会同意我的看法 - 无论是经常部署应用程序还是备份文件。 O3-Mini可以通过编码来帮助您自动化它们,而不是每次手动运行这些命令。它可以根据您的要求编写您的shell脚本以自动化重复终端命令。
>>>模板提示:
“您可以编写一个shell脚本以自动备份目录(/home/home/user/documents),每天午夜使用cron?
> o3-mini的响应:1️。 shell脚本(backup.sh)
#定义源和目标目录
#创建备份目录
import pandas as pd # Sample data data = { "Product": ["Laptop", "Headphones", "Smartphone", "Monitor", "Mouse"], "Category": ["Electronics", "Electronics", "Electronics", "Accessories", "Accessories"], "Sales": ["00", "0", "0", "0", ""] # Sales values contain a '$' sign } df = pd.DataFrame(data) # Convert Sales column to float after stripping '$' df["Sales"] = df["Sales"].str.replace("$", "").astype(float) # ✅ Fixed: Removed currency symbols # Calculate total sales per category total_sales = df.groupby("Category")["Sales"].sum() print(total_sales)
<em>from collections import Counter # Sample text input text = """ This is a sample text. This text is meant to test word frequency. Some words appear more than once, some words appear only once. """ # Convert to lowercase and split into words words = text.lower().split() # Count word occurrences word_counts = Counter(words) # Print results for word, count in word_counts.items(): print(f"{word}: {count}")</em>
// Sample text input let text = ` This is a sample text. This text is meant to test word frequency. Some words appear more than once, some words appear only once. `; // Convert to lowercase and split into words let words = text.toLowerCase().replace(/[^\w\s]/g, "").split(/\s+/); // Count word occurrences let wordCounts = new Map(); words.forEach(word => { wordCounts.set(word, (wordCounts.get(word) || 0) + 1); }); // Print results wordCounts.forEach((count, word) => { console.log(`${word}: ${count}`); });
运行以下命令以提供脚本执行权限:
<em>import sqlite3 def update_user_balance(user_id, amount): conn = sqlite3.connect("database.db") cursor = conn.cursor() current_balance = cursor.execute("SELECT balance FROM users WHERE id = ?", (user_id,)).fetchone() if current_balance: new_balance = current_balance[0] + amount cursor.execute("UPDATE users SET balance = ? WHERE id = ?", (new_balance, user_id)) conn.commit() conn.close() return new_balance else: conn.close() return None</em>
安排每日备份
打开crontab编辑器:import sqlite3 def update_user_balance(user_id, amount): """ Updates the balance of a user in the database. Parameters: user_id (int): The unique ID of the user whose balance needs to be updated. amount (float): The amount to add to (or subtract from) the user's balance. Returns: float: The updated balance if the user exists. None: If the user does not exist in the database. """ # Connect to the SQLite database conn = sqlite3.connect("database.db") cursor = conn.cursor() # Fetch the current balance of the user current_balance = cursor.execute( "SELECT balance FROM users WHERE id = ?", (user_id,) ).fetchone() if current_balance: # Calculate the new balance new_balance = current_balance[0] + amount # Update the user's balance in the database cursor.execute( "UPDATE users SET balance = ? WHERE id = ?", (new_balance, user_id) ) # Commit the transaction conn.commit() # Close the connection conn.close() return new_balance # Return the updated balance else: # Close the connection if user does not exist conn.close() return None # Return None if user ID is not found
在最后添加此行:
>
<em>import requests response = requests.get("https://api.example.com/data") data = response.json()</em>
>
>
常见问题>
以上是10 O3米尼编码提示可以帮助您完成所有编码任务的详细内容。更多信息请关注PHP中文网其他相关文章!