AI语言模型的演变
已设定了新的标准,尤其是在编码和编程环境中。领导电荷为> deepSeek-v3,gpt-4o 和
结论>
>
模型体系结构和设计> deepSeek-v3
deepSeek -v3是具有6710亿参数的外源外源混合物(MOE)模型,每个令牌激活了370亿个参数。它利用了14.8万亿代币训练的最先进的负载平衡和多token预测方法。该模型在多个基准测试中实现顶级性能,维持培训效率,成本仅为278.8万h800 gpu小时。 DeepSeek-v3 deepseek-r1 lite中的推理能力,并提供了128K上下文窗口。此外,它可以处理多种输入类型,包括文本,结构化数据和复杂的多模式输入,使其用于多种用例。 也请阅读:使用DeepSeek-V3 构建AI应用程序 > gpt-4o绿色3.3 70B
METAllama3.3 70 B多语言大语言模型(LLM)是一种开源,预先培训的,指令调节的生成模型,具有700亿个参数。它旨在优化效率和可扩展性。它采用尖端技术来处理各种各样的任务,对超过15万亿代币进行了培训。 Llama 3.3 70B是一种使用优化的变压器体系结构的自动回归语言模型。该模型在几个基准上实现了出色的性能,并通过优化的资源分配保持培训成本最低。
llama 3.3 70b支持宽阔的上下文窗口,并包含了高级推理功能,以实现细微和精确的任务处理。它旨在处理基于文本的输入,但也可以处理结构化数据,在各种应用程序中提供灵活性。> DeepSeek-V3 vs GPT-4O vs Llama 3.3 70b:模型评估
1。模型概述
Benchmark | Description | DeepSeek-V3 | GPT-4o | Llama 3.3 70B |
MMLU | Massive Multitask Language Understanding- Test knowledge across 57 subjects including maths, history, law and more | 88.5% | 88.7% | 88.5% |
MMLU-Pro | A more robust MMLU benchmark with more complex reasoning focused questions and reduced prompt sensitivity | 75.9% | 74.68% | 75.9% |
MMMU | Massive Multitask Multimodal Understanding: Text understanding across text, audio,images and videos | Not available | 69.1% | Not available |
HellaSwag | A challenging sentence completion benchmark | 88.9% | Not available | Not available |
HumanEval | Evaluates code generation and problem solving capabilities | 82.6% | 90.2% | 88.4% |
MATH | Tests Mathematical problem solving abilities across various difficulty levels | 61.6% | 75.9% | 77% |
GPQA | Test PhD-level knowledge in physics, chemistry and biology that require domain expertise | 59.1% | 53.6% | 50.5% |
IFEval | Test model’s ability to accurately follow explicit formatting instructions, generate appropriate outputs and maintain consistent instructions | 86.1% | Not available | 92.1% |
>您可以在此处找到其单独的基准测试的结果:
谈到定价,与DeepSeek-v3相比,GPT-4O的输入和输出令牌贵大约30倍。同时,与DeepSeek-V3有关输入和输出令牌的Llama 3.3 70B指令大约贵1.5倍。 在需要结构化任务完成的基准中,
DeepSeek-V3在基准中擅长,例如MMLU(大量的多任务语言理解)和HumaneVal(代码生成)。但是,它在数学(数学解决问题)等基准中面临挑战,在数学(数学解决问题)中,其表现不那么竞争。它也导致GPQA(广义段落问题回答),表现优于该域中的其他模型。> 在HumaneVal和MMLU中,
gpt-4O表现特别出色,在那里它以其在各种主题上产生高质量响应的能力而脱颖而出。尽管它在基于推理的任务中闪耀,但它在其他模型等专业领域(例如Math和GPQA)中挣扎。 Llama 3.3 70b在数学和IFEVAL等基准(评估后的指令)等基准中显示出其优势。它比其他模型更有效地展示了出色的问题解决能力,并更有效地遵循复杂的指示。它在HumaneVal和GPQA等其他基准测试中的性能不如DeepSeek-V3和GPT-4O。 > deepSeek-v3 vs gpt-4o vs llama 3.3 70b:编码功能
现在,我们将比较DeepSeek-V3,GPT-4O和Llama 3.3 70B的代码编写功能。为此,我们将在所有三种模型上给出相同的提示,并在以下指标上评估他们的回答:
可读性
q。写python代码以查找大量的阶乘。
GPT-4O响应
使用数组(手动处理乘法和携带操作)来计算大数的阶乘,这是一个python实现:
生成代码的输出
的响应骆驼3.3 70B
>def multiply(arr, x): """ Multiplies an array representation of a number with an integer x. : param arr: List of integers representing the digits of the number. : param x: Integer to multiply with. :return: Updated array with the result. """ carry = 0 # Initialize carry for i in range(len(arr)): prod = arr[i] * x + carry arr[i] = prod % 10 # Store last digit of the product in the array carry = prod // 10 # Update the carry # Process carry, add digits to the array while carry > 0: arr.append(carry % 10) carry //= 10 return arr def factorial_large_number_array(n): """ Calculate the factorial of a large number using array representation. : param n: Integer for which the factorial is to be computed. :return: Factorial of n as a string. """ if n < 0: return "Factorial is not defined for negative numbers." if n == 0 or n == 1: return "1" arr = [1] # Initialize the array with the first factorial value (1) for x in range(2, n + 1): arr = multiply(arr, x) # The result is stored in reverse order in the array return ''.join(map(str, reversed(arr))) # Input a large number try: number = int(input("Enter a large number to calculate its factorial: ")) result = factorial_large_number_array(number) print(f"The factorial of {number} is:\n{result}") except ValueError: print("Invalid input! Please enter a valid integer.")
def multiply(arr, x): """ Multiplies an array representation of a number with an integer x. : param arr: List of integers representing the digits of the number. : param x: Integer to multiply with. :return: Updated array with the result. """ carry = 0 # Initialize carry for i in range(len(arr)): prod = arr[i] * x + carry arr[i] = prod % 10 # Store last digit of the product in the array carry = prod // 10 # Update the carry # Process carry, add digits to the array while carry > 0: arr.append(carry % 10) carry //= 10 return arr def factorial_large_number_array(n): """ Calculate the factorial of a large number using array representation. : param n: Integer for which the factorial is to be computed. :return: Factorial of n as a string. """ if n < 0: return "Factorial is not defined for negative numbers." if n == 0 or n == 1: return "1" arr = [1] # Initialize the array with the first factorial value (1) for x in range(2, n + 1): arr = multiply(arr, x) # The result is stored in reverse order in the array return ''.join(map(str, reversed(arr))) # Input a large number try: number = int(input("Enter a large number to calculate its factorial: ")) result = factorial_large_number_array(number) print(f"The factorial of {number} is:\n{result}") except ValueError: print("Invalid input! Please enter a valid integer.")
DeepSeek-V3
要使用Python中的数组计算大数量的阶乘,我们可以将结果存储在数组(或列表)中,以处理超过标准数据类型限制的非常大的数字。您可以实现以下方式:
生成代码的输出def multiply(x, res, res_size): """Multiplies x with the number represented by res[]""" carry = 0 for i in range(res_size): prod = res[i] * x + carry res[i] = prod % 10 carry = prod // 10 while carry: res.append(carry % 10) carry = carry // 10 def factorial(n): """ Calculates the factorial of a number n""" res = [1] res_size = 1 for i in range(2, n + 1): multiply(i, res, res_size) res_size = len(res) return res def print_factorial(n): """ Prints the factorial of a number n""" res = factorial(n) print("Factorial of", n, "is:") for digit in reversed(res): print(digit, end="") # Example usage: n = 55 print_factorial(n)
比较结果
>建议:
用于实际用途的
>:
生成代码的输出
>这是一个python解决方案,该解决方案最多可以在删除一个字符后检查字符串是否可以是文安。 生成代码的输出
def factorial(n): # Initialize the result as a list with 1 result = [1] # Multiply the result list with numbers from 2 to n for x in range(2, n + 1): carry = 0 # Multiply each digit in the result list with x for i in range(len(result)): product = result[i] * x + carry result[i] = product % 10 # Store the last digit carry = product // 10 # Carry over the remaining digits # Add the remaining carry to the result list while carry > 0: result.append(carry % 10) carry = carry // 10 # Reverse the result list to get the correct order result.reverse() return result # Input: Number to find factorial of n = int(input("Enter a number: ")) # Compute factorial factorial_result = factorial(n) # Convert the list of digits to a string for display factorial_str = ''.join(map(str, factorial_result)) # Output the result print(f"Factorial of {n} is: {factorial_str}")
> 生成代码的输出
def multiply(arr, x): """ Multiplies an array representation of a number with an integer x. : param arr: List of integers representing the digits of the number. : param x: Integer to multiply with. :return: Updated array with the result. """ carry = 0 # Initialize carry for i in range(len(arr)): prod = arr[i] * x + carry arr[i] = prod % 10 # Store last digit of the product in the array carry = prod // 10 # Update the carry # Process carry, add digits to the array while carry > 0: arr.append(carry % 10) carry //= 10 return arr def factorial_large_number_array(n): """ Calculate the factorial of a large number using array representation. : param n: Integer for which the factorial is to be computed. :return: Factorial of n as a string. """ if n < 0: return "Factorial is not defined for negative numbers." if n == 0 or n == 1: return "1" arr = [1] # Initialize the array with the first factorial value (1) for x in range(2, n + 1): arr = multiply(arr, x) # The result is stored in reverse order in the array return ''.join(map(str, reversed(arr))) # Input a large number try: number = int(input("Enter a large number to calculate its factorial: ")) result = factorial_large_number_array(number) print(f"The factorial of {number} is:\n{result}") except ValueError: print("Invalid input! Please enter a valid integer.")
比较见解
GPT-4O的响应是最完整且有据可查的响应。它以清晰度处理核心功能,使未来的开发人员可以轻松修改或扩展代码。它的效率和清晰文档的结合使其非常适合生产环境。
用于实际用途的
>
:GPT-4O响应是最好的,因为其详尽的文档,清晰的结构和可读性。 出于教育目的,
>以上是DeepSeek-V3与GPT-4O vs Llama 3.3 70b:找到最佳的AI模型的详细内容。更多信息请关注PHP中文网其他相关文章!