Node.js编写爬虫的基本思路及抓取百度图片的实例分享_node.js
其实写爬虫的思路十分简单:
- 按照一定的规律发送 HTTP 请求获得页面 HTML 源码(必要时需要加上一定的 HTTP 头信息,比如 cookie 或 referer 之类)
- 利用正则匹配或第三方模块解析 HTML 代码,提取有效数据
- 将数据持久化到数据库中
但是真正写起这个爬虫来,我还是遇到了很多的问题(和自己的基础不扎实也有很大的关系,node.js 并没有怎么认真的学过)。主要还是 node.js 的异步和回调知识没有完全掌握,导致在写代码的过程中走了很多弯路。
模块化
模块化对于 node.js 程序是至关重要的,不能像原来写 PHP 那样所有的代码都扔到一个文件里(当然这只是我个人的恶习),所以一开始就要分析这个爬虫需要实现的功能,并大致的划分了三个模块。
主程序,调用爬虫模块和持久化模块实现完整的爬虫功能
爬虫模块,根据传来的数据发送请求,解析 HTML 并提取有用数据,返回一个对象
持久化模块,接受一个对象,将其中的内容储存到数据库中
模块化也带来了困扰了我一个下午的问题:模块之间的异步调用导致数据错误。其实我至今都不太明白问题到底出在哪儿,鉴于脚本语言不那么方便的调试功能,暂时还没有深入研究。
另外一点需要注意的是,模块化时尽量慎用全局对象来储存数据,因为可能你这个模块的一个功能还没有结束,这个全局变量已经被修改了。
Control Flow
这个东西很难翻译,直译叫控制流(吗)。众所周知,node.js 的核心思想就是异步,但是异步多了就会产生好几层嵌套,代码实在难看。这个时候,你需要借助一些 Control Flow 模块来重新整理你的逻辑。在这里就要推荐开发社区十分活跃,用起来也很顺手的 async.js(https://github.com/caolan/async/)。
async 提供了很多实用的方法,我在写爬虫时主要用到了
- async.eachSeries(arr, fn, callback) 依次把 arr 中的每一个元素传给 fn,若 fn 回调没有返回错误对象就继续传下一个,否则把错误对象传给 callback,循环结束
- async.parallel(fn[, fn] , callback) 当所有的 fn 都执行完成后执行 callback
这些控制流方法给爬虫的开发工作带来了很大的方便。考虑这么一个应用场景,你需要把若干条数据插入数据库(属于同一个学生),你需要在所有数据都插入完成后才能返回结果,那么如何保证所有的插入操作都结束了呢?只能是层层回调保证,如果用 async.parallel 就方便多了。
这里再多提一句,本来保证所有的插入都完成这个操作可以在 SQL 层实现,即 transaction,但是 node-mysql 截止我使用的时候还是没有很好的支持 transaction,所以只有自己手动用代码保证了。
解析 HTML
在解析过程中也遇到一些问题,这里一并记录下来。
最基本的发送 HTTP 请求获得 HTML 代码,使用 node 自带的 http.request 功能即可。如果是爬简单的内容,比如获得某个指定 id 元素中的内容(常见于抓去商品价格),那么正则足以完成任务。但是对于复杂的页面,尤其是数据项较多的页面,使用 DOM 会更加方便高效。
而 node.js 最好的 DOM 实现非 cheerio(https://github.com/MatthewMueller/cheerio) 莫属了。其实 cheerio 应该算是 jQuery 的一个针对 DOM 操作优化和精简的子集,包含了 DOM 操作的大部分内容,去除了其它不必要的内容。使用 cheerio 你就可以像用普通 jQuery 选择器那样选择你需要的内容。
下载图片
在爬数据时,我们可能还需要下载图片。其实下载图片的方式和普通的网页没有太大的区别,但是有一点让我吃了苦头。
注意下面代码中言辞激烈的注释,那就是我年轻时犯下的错误……
var req = http.request(options, function(res){ //初始化数据!!! var binImage = ''; res.setEncoding('binary'); res.on('data', function(chunk){ binImage += chunk; }); res.on('end', function(){ if (!binImage) { console.log('image data is null'); return null; } fs.writeFile(imageFolder + filename, binImage, 'binary', function(err){ if (err) { console.log('image writing error:' + err.message); return null; } else{ console.log('image ' + filename + ' saved'); return filename; } }); }); res.on('error', function(e){ console.log('image downloading response error:' + e.message); return null; }); }); req.end();
GBK 转码
另外一个值得说明的问题就是 node.js 爬虫在爬 GBK 编码内容时转码的问题,其实这个问题很好解决,但是新手可能会绕弯路。这里就把源码全部奉上:
var req = http.request(options, function(res) { res.setEncoding('binary'); res.on('data', function (chunk) { html += chunk; }); res.on('end', function(){ //转换编码 html = iconv.decode(html, 'gbk'); }); }); req.end();
这里我使用的转码库是 iconv-lite(https://github.com/ashtuchkin/iconv-lite),完美支持 GBK 和 GB2312 等双字节编码。
实例:爬虫批量下载百度图片
var fs = require('fs'), path = require('path'), util = require('util'), // 以上为Nodejs自带依赖包 request = require('request'); // 需要npm install的包 // main函数,使用 node main执行即可 patchPreImg(); // 批量处理图片 function patchPreImg() { var tag1 = '摄影', tag2 = '国家地理', url = 'http://image.baidu.com/data/imgs?pn=%s&rn=60&p=channel&from=1&col=%s&tag=%s&sort=1&tag3=', url = util.format(url, 0, tag1, tag2), url = encodeURI(url), dir = 'D:/downloads/images/', dir = path.join(dir, tag1, tag2), dir = mkdirSync(dir); request(url, function(error, response, html) { var data = JSON.parse(html); if (data && Array.isArray(data.imgs)) { var imgs = data.imgs; imgs.forEach(function(img) { if (Object.getOwnPropertyNames(img).length > 0) { var desc = img.desc || ((img.owner && img.owner.userName) + img.column); desc += '(' + img.id + ')'; var downloadUrl = img.downloadUrl || img.objUrl; downloadImg(downloadUrl, dir, desc); } }); } }); } // 循环创建目录 function mkdirSync(dir) { var parts = dir.split(path.sep); for (var i = 1; i <= parts.length; i++) { dir = path.join.apply(null, parts.slice(0, i)); fs.existsSync(dir) || fs.mkdirSync(dir); } return dir; } var index = 1; // 开始下载图片,并log统计日志 function downloadImg(url, dir, desc) { var fileType = 'jpg'; if (url.match(/\.(\w+)$/)) fileType = RegExp.$1; desc += '.' + fileType; var options = { url: url, headers: { Host: 'f.hiphotos.baidu.com', Cookie: 'BAIDUID=810ACF57B5C38556045DFFA02C61A9F8:FG=1;' } }; var startTime = new Date().getTime(); request(options) .on('response', function() { var endTime = new Date().getTime(); console.log('Downloading...%s.. %s, 耗时: %ss', index++, desc, (endTime - startTime) / 1000); }) .pipe(fs.createWriteStream(path.join(dir, desc))); }

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

人脸检测识别技术已经是一个比较成熟且应用广泛的技术。而目前最为广泛的互联网应用语言非JS莫属,在Web前端实现人脸检测识别相比后端的人脸识别有优势也有弱势。优势包括减少网络交互、实时识别,大大缩短了用户等待时间,提高了用户体验;弱势是:受到模型大小限制,其中准确率也有限。如何在web端使用js实现人脸检测呢?为了实现Web端人脸识别,需要熟悉相关的编程语言和技术,如JavaScript、HTML、CSS、WebRTC等。同时还需要掌握相关的计算机视觉和人工智能技术。值得注意的是,由于Web端的计

PiNetwork节点详解及安装指南本文将详细介绍PiNetwork生态系统中的关键角色——Pi节点,并提供安装和配置的完整步骤。Pi节点在PiNetwork区块链测试网推出后,成为众多先锋积极参与测试的重要环节,为即将到来的主网发布做准备。如果您还不了解PiNetwork,请参考Pi币是什么?上市价格多少?Pi用途、挖矿及安全性分析。什么是PiNetwork?PiNetwork项目始于2019年,拥有其专属加密货币Pi币。该项目旨在创建一个人人可参与

随着互联网金融的迅速发展,股票投资已经成为了越来越多人的选择。而在股票交易中,蜡烛图是一种常用的技术分析方法,它能够显示股票价格的变化趋势,帮助投资者做出更加精准的决策。本文将通过介绍PHP和JS的开发技巧,带领读者了解如何绘制股票蜡烛图,并提供具体的代码示例。一、了解股票蜡烛图在介绍如何绘制股票蜡烛图之前,我们首先需要了解一下什么是蜡烛图。蜡烛图是由日本人

JavaScript教程:如何获取HTTP状态码,需要具体代码示例前言:在Web开发中,经常会涉及到与服务器进行数据交互的场景。在与服务器进行通信时,我们经常需要获取返回的HTTP状态码来判断操作是否成功,根据不同的状态码来进行相应的处理。本篇文章将教你如何使用JavaScript获取HTTP状态码,并提供一些实用的代码示例。使用XMLHttpRequest

Java爬虫实战:如何高效抓取网页数据引言:随着互联网的快速发展,大量有价值的数据被存储在各种网页中。而要获取这些数据,往往需要手动访问每个网页并逐一提取信息,这无疑是一项繁琐且耗时的工作。为了解决这个问题,人们开发了各种爬虫工具,其中Java爬虫是最常用的之一。本文将带领读者了解如何使用Java编写高效的网页爬虫,并通过具体代码示例来展示实践。一、爬虫的基

js和vue的关系:1、JS作为Web开发基石;2、Vue.js作为前端框架的崛起;3、JS与Vue的互补关系;4、JS与Vue的实践应用。

JavaScript中的HTTP状态码获取方法简介:在进行前端开发中,我们常常需要处理与后端接口的交互,而HTTP状态码就是其中非常重要的一部分。了解和获取HTTP状态码有助于我们更好地处理接口返回的数据。本文将介绍使用JavaScript获取HTTP状态码的方法,并提供具体代码示例。一、什么是HTTP状态码HTTP状态码是指当浏览器向服务器发起请求时,服务

JS-Torch简介JS-Torch是一种深度学习JavaScript库,其语法与PyTorch非常相似。它包含一个功能齐全的张量对象(可与跟踪梯度),深度学习层和函数,以及一个自动微分引擎。JS-Torch适用于在JavaScript中进行深度学习研究,并提供了许多方便的工具和函数来加速深度学习开发。图片PyTorch是一个开源的深度学习框架,由Meta的研究团队开发和维护。它提供了丰富的工具和库,用于构建和训练神经网络模型。PyTorch的设计理念是简单和灵活,易于使用,它的动态计算图特性使
