首页 后端开发 Python教程 Python命名空间详解

Python命名空间详解

Jun 16, 2016 am 08:42 AM
python 命名空间

通俗的来说,Python中所谓的命名空间可以理解为一个容器。在这个容器中可以装许多标识符。不同容器中的同名的标识符是不会相互冲突的。理解python的命名空间需要掌握三条规则:

第一,赋值(包括显式赋值和隐式赋值)产生标识符,赋值的地点决定标识符所处的命名空间

第二,函数定义(包括def和lambda)产生新的命名空间

第三,python搜索一个标识符的顺序是"LEGB"。

所谓的"LEGB"是python中四层命名空间的英文名字首字母的缩写。
最里面的一层是L(local),表示在一个函数定义中,而且在这个函数里面没有再包含函数的定义。
第二层E(enclosing function),表示在一个函数定义中,但这个函数里面还包含有函数的定义,其实L层和E层只是相对的。
第三层G(global),是指一个模块的命名空间,也就是说在一个.py文件中定义的标识符,但不在一个函数中。
第四层B(builtin),是指python解释器启动时就已经具有的命名空间,之所以叫builtin是因为在python解释器启动时会自动载入__builtin__模块,这个模块中的list、str等内置函数的就处于B层的命名空间中。

这三条规则通过一个例子来看比较明白。如下面例子所示:

>>> g = int('0x3', 0)
>>> def outFunc():
  e = 2
    g = 10
  def inFunc():
     l = 1
     return g + e
    return inFunc()
>>> outFunc() ===> 12

登录后复制

来详细看看这段代码中的标识符。
第1行,适用第一条规则“赋值产生标识符”,因此产生一个标识符g。“赋值的地点决定标识符所处的命名空间”,因为g是没有在一个函数定义中,因此g处于'G'层命名空间中。这一行中还有一个标识符,那就是int。那么int是在什么地方定义的呢?由于int是内置函数,是在__builtin__模块中定义的,所以int就处于'B'的层命名空间中。
第2行,适用第一条规则,由于def中包含一个隐性的赋值过程,这一行产生一个标识符outFunc,outFunc并不处于一个函数定义的内部,因此,outFunc处于'G'层命名空间中。此外,这一行还适用第二条规则,产生一个新的命名空间。
第3行,适用第一条规则,产生个标识符e,而且由于这是在一个函数定义内,并且内部还有函数定义,因此e处于'E'层命名空间中。
第4行要注意,适用第一条规则,产生一个标识符g,这个g与e一样外于'E'层命名空间中。这个g与第一行的g是不同的,因为所处的命名空间不一样。
第5行,适用第一条规则,产生一个处于'E'层命名空间的标识符inFunc。与第2行一样,这一行定义函数也产生一个新的命名空间。
第6行,适用第一条规则,产生一个标识符l,由于这个l处于一个函数内部,而且在这个函数内部没有其他函数的定义,因此l处于'L'层命名空间中。
第7行,适用第三条规则,python解释器首先看到标识符g,按照LEGB的顺序往上找,先找L层(也就是在inFunc内部),没有。再找E层,有,值为10。因此这里的g的值为10。寻找过程到为止,并不会再往上找到'G'层。寻找e的过程也一样,e的值为2。因此第9行的结果为12。

其实,所谓的“LEGB”是为了学术上便于表述而创造的。让一个编程的人说出哪个标识符处于哪个层没有什么意义,只要知道对于一个标识符,python是怎么寻找它的值的就可以了。其实找值的过程直观上也很容易理解。

通过上面的例子也可以看出,如果在不同的命名空间中定义了相同的标识符是没有关系的,并不会产生冲突。寻找一个标识符的值过程总是从当前层开始往上找的,首先找到的就为这个标识符的值。也由此可以这么说,'B'层标识符在所有模块(.py文件)中可用;'G'层标识符在当前模块内(.py文件)中可用;'E'和'L'层标识符在当前函数内可用。

再来看一个例子,来解释global语句的用法。代码如下所示:

>>> g = 'global'
>>> s = 'in'
>>> def out():
    g = 'out'
    def inter():
     global g     
     print s,g
  inter()
>>> out() ===> 'in global'

登录后复制

可以看到,虽然有两个层中的g,但使用了global语句后,就是指'G'层的标识符。也就是第7行中的g,就是指第1行产生的那个g,值为'global'。

最后说一句,其实只要在编程的时候注意一下,不要使用相同的标识符,基本上就可以避免任何与命名空间相关的问题。还有就是在一个函数中尽量不要使用上层命名空间中的标识符,如果一定要用,也最好使用参数传递的方式进行,这样有利于保持函数的独立性。

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
威尔R.E.P.O.有交叉游戏吗?
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

PHP和Python:代码示例和比较 PHP和Python:代码示例和比较 Apr 15, 2025 am 12:07 AM

PHP和Python各有优劣,选择取决于项目需求和个人偏好。1.PHP适合快速开发和维护大型Web应用。2.Python在数据科学和机器学习领域占据主导地位。

CentOS上PyTorch的GPU支持情况如何 CentOS上PyTorch的GPU支持情况如何 Apr 14, 2025 pm 06:48 PM

在CentOS系统上启用PyTorchGPU加速,需要安装CUDA、cuDNN以及PyTorch的GPU版本。以下步骤将引导您完成这一过程:CUDA和cuDNN安装确定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA显卡支持的CUDA版本。例如,您的MX450显卡可能支持CUDA11.1或更高版本。下载并安装CUDAToolkit:访问NVIDIACUDAToolkit官网,根据您显卡支持的最高CUDA版本下载并安装相应的版本。安装cuDNN库:前

docker原理详解 docker原理详解 Apr 14, 2025 pm 11:57 PM

Docker利用Linux内核特性,提供高效、隔离的应用运行环境。其工作原理如下:1. 镜像作为只读模板,包含运行应用所需的一切;2. 联合文件系统(UnionFS)层叠多个文件系统,只存储差异部分,节省空间并加快速度;3. 守护进程管理镜像和容器,客户端用于交互;4. Namespaces和cgroups实现容器隔离和资源限制;5. 多种网络模式支持容器互联。理解这些核心概念,才能更好地利用Docker。

Python vs. JavaScript:社区,图书馆和资源 Python vs. JavaScript:社区,图书馆和资源 Apr 15, 2025 am 12:16 AM

Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

minio安装centos兼容性 minio安装centos兼容性 Apr 14, 2025 pm 05:45 PM

MinIO对象存储:CentOS系统下的高性能部署MinIO是一款基于Go语言开发的高性能、分布式对象存储系统,与AmazonS3兼容。它支持多种客户端语言,包括Java、Python、JavaScript和Go。本文将简要介绍MinIO在CentOS系统上的安装和兼容性。CentOS版本兼容性MinIO已在多个CentOS版本上得到验证,包括但不限于:CentOS7.9:提供完整的安装指南,涵盖集群配置、环境准备、配置文件设置、磁盘分区以及MinI

CentOS上PyTorch的分布式训练如何操作 CentOS上PyTorch的分布式训练如何操作 Apr 14, 2025 pm 06:36 PM

在CentOS系统上进行PyTorch分布式训练,需要按照以下步骤操作:PyTorch安装:前提是CentOS系统已安装Python和pip。根据您的CUDA版本,从PyTorch官网获取合适的安装命令。对于仅需CPU的训练,可以使用以下命令:pipinstalltorchtorchvisiontorchaudio如需GPU支持,请确保已安装对应版本的CUDA和cuDNN,并使用相应的PyTorch版本进行安装。分布式环境配置:分布式训练通常需要多台机器或单机多GPU。所

CentOS上PyTorch版本怎么选 CentOS上PyTorch版本怎么选 Apr 14, 2025 pm 06:51 PM

在CentOS系统上安装PyTorch,需要仔细选择合适的版本,并考虑以下几个关键因素:一、系统环境兼容性:操作系统:建议使用CentOS7或更高版本。CUDA与cuDNN:PyTorch版本与CUDA版本密切相关。例如,PyTorch1.9.0需要CUDA11.1,而PyTorch2.0.1则需要CUDA11.3。cuDNN版本也必须与CUDA版本匹配。选择PyTorch版本前,务必确认已安装兼容的CUDA和cuDNN版本。Python版本:PyTorch官方支

centos如何安装nginx centos如何安装nginx Apr 14, 2025 pm 08:06 PM

CentOS 安装 Nginx 需要遵循以下步骤:安装依赖包,如开发工具、pcre-devel 和 openssl-devel。下载 Nginx 源码包,解压后编译安装,并指定安装路径为 /usr/local/nginx。创建 Nginx 用户和用户组,并设置权限。修改配置文件 nginx.conf,配置监听端口和域名/IP 地址。启动 Nginx 服务。需要注意常见的错误,如依赖问题、端口冲突和配置文件错误。性能优化需要根据具体情况调整,如开启缓存和调整 worker 进程数量。

See all articles