Python中dictionary items()系列函数的用法实例
本文实例讲述了Python中dictionary items()系列函数的用法,对Python程序设计有很好的参考借鉴价值。具体分析如下:
先来看一个示例:
import html # available only in Python 3.x def make_elements(name, value, **attrs): keyvals = [' %s="%s"' % item for item in attrs.items()] attr_str = ''.join(keyvals) element = '<{name}{attrs}>{value}</{name}>'.format( name = name, attrs = attr_str, value = html.escape(value)) return element make_elements('item', 'Albatross', size='large', quantity=6) make_elements('p', '<spam>')
该程序的作用很简单,就是生成HTML标签,注意html这个模块只能在Python 3.x才有。
起初我只是注意到,生成标签属性列表的keyvals这个dictionary类型变量构建的方式很有意思,两个%s对应一个item,所以就查阅了相关的资料,结果扯出了挺多的东西,在此一并总结。
注:下面所有Python解释器使用的版本,2.x 对应的是2.7.3,3.x 对应的是3.4.1
在 Python 2.x 里,官方文档里items的方法是这么说明:生成一个 (key, value) 对的list,就像下面这样:
>>> d = {'size': 'large', 'quantity': 6} >>> d.items() [('quantity', 6), ('size', 'large')]
在搜索的过程中,无意看到stackoverflow上这样一个问题:dict.items()和dict.iteritems()有什么区别? ,第一个答案大致的意思是这样的:
“起初 items() 就是返回一个像上面那样的包含dict所有元素的list,但是由于这样太浪费内存,所以后来就加入了(注:在Python 2.2开始出现的)iteritems(), iterkeys(), itervalues()这一组函数,用于返回一个 iterator 来节省内存,但是在 3.x 里items() 本身就返回这样的 iterator,所以在 3.x 里items() 的行为和 2.x 的 iteritems() 行为一致,iteritems()这一组函数就废除了。”
不过更加有意思的是,这个答案虽然被采纳,下面的评论却指出,这种说法并不准确,在 3.x 里 items() 的行为和 2.x 的 iteritems() 不一样,它实际上返回的是一个"full sequence-protocol object",这个对象能够反映出 dict 的变化,后来在 Python 2.7 里面也加入了另外一个函数 viewitems() 和 3.x 的这种行为保持一致
为了证实评论中的说法,我做了下面的测试,注意观察测试中使用的Python版本:
测试1(Python 2.7.3):
Python 2.7.3 (default, Feb 27 2014, 19:58:35) [GCC 4.6.3] on linux2 Type "help", "copyright", "credits" or "license" for more information. >>> d = {'size': 'large', 'quantity': 6} >>> il = d.items() >>> it = d.iteritems() >>> vi = d.viewitems() >>> il [('quantity', 6), ('size', 'large')] >>> it <dictionary-itemiterator object at 0x7fe555159f18> >>> vi dict_items([('quantity', 6), ('size', 'large')])
测试2(Python 3.4.1):
Python 3.4.1 (default, Aug 12 2014, 16:43:01) [GCC 4.9.0] on linux Type "help", "copyright", "credits" or "license" for more information. >>> d = {'size': 'large', 'quantity': 6} >>> il = d.items() >>> it = d.iteritems() Traceback (most recent call last): File "<stdin>", line 1, in <module> AttributeError: 'dict' object has no attribute 'iteritems' >>> vi = d.viewitems() Traceback (most recent call last): File "<stdin>", line 1, in <module> AttributeError: 'dict' object has no attribute 'viewitems' >>> il dict_items([('size', 'large'), ('quantity', 6)])
可以看到在 Python 3.x 里面,iteritems() 和 viewitems() 这两个方法都已经废除了,而 item() 得到的结果是和 2.x 里面 viewitems() 一致的。
2.x 里 iteritems() 和 viewitems() 返回的内容都是可以用 for 来遍历的,像下面这样
>>> for k, v in it: ... print k, v ... quantity 6 size large >>> for k, v in vi: ... print k, v ... quantity 6 size large
这两者的区别体现在哪里呢?viewitems() 返回的是view object,它可以反映出 dictionary 的变化,比如上面的例子,假如在使用 it 和 vi 这两个变量之前,向 d 里面添加一个key-value组合,区别就很容易看出来了。
>>> it = d.iteritems() >>> vi = d.viewitems() >>> d['newkey'] = 'newvalue' >>> d {'newkey': 'newvalue', 'quantity': 6, 'size': 'large'} >>> vi dict_items([('newkey', 'newvalue'), ('quantity', 6), ('size', 'large')]) >>> it <dictionary-itemiterator object at 0x7f50ab898f70> >>> for k, v in vi: ... print k, v ... newkey newvalue quantity 6 size large >>> for k, v in it: ... print k, v ... Traceback (most recent call last): File "<stdin>", line 1, in <module> RuntimeError: dictionary changed size during iteration
在第三行中,我们像 d 里面插入了一个新的元素,vi 可以继续遍历,而且新的遍历能够反映出 d 的变化,但是在遍历 it 的时候,报错提示 dictionary 在遍历的时候大小发生了变化,遍历失败。
总结起来,在 2.x 里面,最初是 items() 这个方法,但是由于太浪费内存,所以加入了 iteritems() 方法,用于返回一个 iterator,在 3.x 里面将 items() 的行为修改成返回一个 view object,让它返回的对象同样也可以反映出原 dictionary 的变化,同时在 2.7 里面又加入了 viewitems() 向下兼容这个特性。
所以在 3.x 里面不需要再去纠结于三者的不同之处,因为只保留了一个 items() 方法。
相信本文所述示例对大家的Python程序设计有一定的借鉴价值。

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

MySQL 有免费的社区版和收费的企业版。社区版可免费使用和修改,但支持有限,适合稳定性要求不高、技术能力强的应用。企业版提供全面商业支持,适合需要稳定可靠、高性能数据库且愿意为支持买单的应用。选择版本时考虑的因素包括应用关键性、预算和技术技能。没有完美的选项,只有最合适的方案,需根据具体情况谨慎选择。

HadiDB:轻量级、高水平可扩展的Python数据库HadiDB(hadidb)是一个用Python编写的轻量级数据库,具备高度水平的可扩展性。安装HadiDB使用pip安装:pipinstallhadidb用户管理创建用户:createuser()方法创建一个新用户。authentication()方法验证用户身份。fromhadidb.operationimportuseruser_obj=user("admin","admin")user_obj.

MySQL Workbench 可以连接 MariaDB,前提是配置正确。首先选择 "MariaDB" 作为连接器类型。在连接配置中,正确设置 HOST、PORT、USER、PASSWORD 和 DATABASE。测试连接时,检查 MariaDB 服务是否启动,用户名和密码是否正确,端口号是否正确,防火墙是否允许连接,以及数据库是否存在。高级用法中,使用连接池技术优化性能。常见错误包括权限不足、网络连接问题等,调试错误时仔细分析错误信息和使用调试工具。优化网络配置可以提升性能

直接通过 Navicat 查看 MongoDB 密码是不可能的,因为它以哈希值形式存储。取回丢失密码的方法:1. 重置密码;2. 检查配置文件(可能包含哈希值);3. 检查代码(可能硬编码密码)。

无法连接 MySQL 可能是由于以下原因:MySQL 服务未启动、防火墙拦截连接、端口号错误、用户名或密码错误、my.cnf 中的监听地址配置不当等。排查步骤包括:1. 检查 MySQL 服务是否正在运行;2. 调整防火墙设置以允许 MySQL 监听 3306 端口;3. 确认端口号与实际端口号一致;4. 检查用户名和密码是否正确;5. 确保 my.cnf 中的 bind-address 设置正确。

MySQL 可在无需网络连接的情况下运行,进行基本的数据存储和管理。但是,对于与其他系统交互、远程访问或使用高级功能(如复制和集群)的情况,则需要网络连接。此外,安全措施(如防火墙)、性能优化(选择合适的网络连接)和数据备份对于连接到互联网的 MySQL 数据库至关重要。

MySQL数据库性能优化指南在资源密集型应用中,MySQL数据库扮演着至关重要的角色,负责管理海量事务。然而,随着应用规模的扩大,数据库性能瓶颈往往成为制约因素。本文将探讨一系列行之有效的MySQL性能优化策略,确保您的应用在高负载下依然保持高效响应。我们将结合实际案例,深入讲解索引、查询优化、数据库设计以及缓存等关键技术。1.数据库架构设计优化合理的数据库架构是MySQL性能优化的基石。以下是一些核心原则:选择合适的数据类型选择最小的、符合需求的数据类型,既能节省存储空间,又能提升数据处理速度

作为数据专业人员,您需要处理来自各种来源的大量数据。这可能会给数据管理和分析带来挑战。幸运的是,两项 AWS 服务可以提供帮助:AWS Glue 和 Amazon Athena。
