从零学python系列之数据处理编程实例(二)
在上一节从零学python系列之数据处理编程实例(一)的基础上数据发生了变化,文件中除了学生的成绩外,新增了学生姓名和出生年月的信息,因此将要成变成:分别根据姓名输出每个学生的无重复的前三个最好成绩和出生年月
数据准备:分别建立四个文本文件
james2.txt James Lee,2002-3-14,2-34,3:21,2.34,2.45,3.01,2:01,2:01,3:10,2-22
julie2.txt Julie Jones,2002-8-17,2.59,2.11,2:11,2:23,3-10,2-23,3:10,3.21,3-21
mikey2.txt Mikey McManus,2002-2-24,2:22,3.01,3:01,3.02,3:02,3.02,3:22,2.49,2:38
sarah2.txt Sarah Sweeney,2002-6-17,2:58,2.58,2:39,2-25,2-55,2:54,2.18,2:55,2:55
在上一节基础上,修改部分代码,将新要求实现如下:
import os
print(os.getcwd())
os.chdir('C:\Python33\HeadFirstPython\hfpy_code\chapter6') #将工作空间修改为文件所在的目录
#定义函数get_filedata从文件中取值
def get_filedata(filename):
try:
with open(filename) as f: #with语句打开和自动关闭文件
data=f.readline() #从文件中逐行读取字符
data_list=data.strip().split(',') #将字符间的空格清除后,用逗号分隔字符
return({
"name" : data_list.pop(0),
"date_of_birth" : data_list.pop(0),
"times" : str(sorted(set([modify_time_format(s) for s in data_list]))[0:3])
}) #使用字典将关联的姓名,出生年月,时间键和值进行存储并返回
except IOError as ioerr:
print ('File Error' + str(ioerr)) #异常处理,打印错误
return (None)
#定义函数modify_time_format将所有文件中的时分表达方式统一为“分.秒”
def modify_time_format(time_string):
if "-" in time_string:
splitter="-"
elif ":" in time_string:
splitter=":"
else:
splitter="."
(mins, secs)=time_string.split(splitter) #用分隔符splitter分隔字符后分别存入mins和secs
return (mins+ '.' +secs)
#定义函数get_prev_three返回文件中排名前三的不重复的时间成绩
def get_prev_three(filename):
new_list=[modify_time_format(each_t) for each_t in get_filedata(filename)] #采用列表推导将统一时分表达方式后的记录生成新的列表
delete_repetition=set(new_list) #采用集合set函数删除新列表中重复项,并生成新的集合
in_order=sorted(delete_repetition) #采用复制排序sorted函数对无重复性的新集合进行排序
return (in_order[0:3])
#输出james的排名前三的不重复成绩和出生年月
james = get_filedata('james2.txt')
print (james["name"]+"'s fastest times are: " + james["times"])
print (james["name"] + "'s birthday is: " + james["date_of_birth"])
#输出julie的排名前三的不重复成绩和出生年月
julie = get_filedata('julie2.txt')
print (julie["name"]+"'s fastest times are: " + julie["times"])
print (julie["name"] + "'s birthday is: " + julie["date_of_birth"])
#输出mikey的排名前三的不重复成绩和出生年月
mikey = get_filedata('mikey2.txt')
print (mikey["name"]+"'s fastest times are: " + mikey["times"])
print (mikey["name"] + "'s birthday is: " + mikey["date_of_birth"])
#输出sarah的排名前三的不重复成绩和出生年月
sarah = get_filedata('sarah2.txt')
print (sarah["name"]+"'s fastest times are: " + sarah["times"])
print (sarah["name"] + "'s birthday is: " + sarah["date_of_birth"])
通过建立继承内置list的类AthleteList,将方法定义在类中实现相同功能:
import os
print(os.getcwd())
os.chdir('C:\Python33\HeadFirstPython\hfpy_code\chapter6') #将工作空间修改为文件所在的目录
#定义类AthleteList继承python内置的list
class AthleteList(list):
def __init__(self, name, dob=None, times=[]):
list.__init__([])
self.name=name
self.dob=dob
self.extend(times)
def get_prev_three(self):
return (sorted(set([modify_time_format(t) for t in self]))[0:3])
def get_filedata(filename):
try:
with open(filename) as f: #with语句打开和自动关闭文件
data=f.readline() #从文件中逐行读取字符
data_list=data.strip().split(',') #将字符间的空格清除后,用逗号分隔字符
return(
AthleteList(data_list.pop(0), data_list.pop(0), data_list)
) #使用字典将关联的姓名,出生年月,时间键和值进行存储并返回
except IOError as ioerr:
print ('File Error' + str(ioerr)) #异常处理,打印错误
return (None)
def modify_time_format(time_string):
if "-" in time_string:
splitter="-"
elif ":" in time_string:
splitter=":"
else:
splitter="."
(mins, secs)=time_string.split(splitter) #用分隔符splitter分隔字符后分别存入mins和secs
return (mins+ '.' +secs)
james = get_filedata('james2.txt')
print (james.name+"'s fastest times are: " + str(james.get_prev_three()))
julie = get_filedata('julie2.txt')
print (julie.name+"'s fastest times are: " + str(julie.get_prev_three()))
mikey = get_filedata('mikey2.txt')
print (mikey.name+"'s fastest times are: " + str(mikey.get_prev_three()))
sarah = get_filedata('sarah2.txt')
print (sarah.name+"'s fastest times are: " + str(sarah.get_prev_three()))

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

PHP和Python各有优劣,选择取决于项目需求和个人偏好。1.PHP适合快速开发和维护大型Web应用。2.Python在数据科学和机器学习领域占据主导地位。

在CentOS系统上高效训练PyTorch模型,需要分步骤进行,本文将提供详细指南。一、环境准备:Python及依赖项安装:CentOS系统通常预装Python,但版本可能较旧。建议使用yum或dnf安装Python3并升级pip:sudoyumupdatepython3(或sudodnfupdatepython3),pip3install--upgradepip。CUDA与cuDNN(GPU加速):如果使用NVIDIAGPU,需安装CUDATool

在CentOS系统上启用PyTorchGPU加速,需要安装CUDA、cuDNN以及PyTorch的GPU版本。以下步骤将引导您完成这一过程:CUDA和cuDNN安装确定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA显卡支持的CUDA版本。例如,您的MX450显卡可能支持CUDA11.1或更高版本。下载并安装CUDAToolkit:访问NVIDIACUDAToolkit官网,根据您显卡支持的最高CUDA版本下载并安装相应的版本。安装cuDNN库:前

Docker利用Linux内核特性,提供高效、隔离的应用运行环境。其工作原理如下:1. 镜像作为只读模板,包含运行应用所需的一切;2. 联合文件系统(UnionFS)层叠多个文件系统,只存储差异部分,节省空间并加快速度;3. 守护进程管理镜像和容器,客户端用于交互;4. Namespaces和cgroups实现容器隔离和资源限制;5. 多种网络模式支持容器互联。理解这些核心概念,才能更好地利用Docker。

Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

在CentOS下选择PyTorch版本时,需要考虑以下几个关键因素:1.CUDA版本兼容性GPU支持:如果你有NVIDIAGPU并且希望利用GPU加速,需要选择支持相应CUDA版本的PyTorch。可以通过运行nvidia-smi命令查看你的显卡支持的CUDA版本。CPU版本:如果没有GPU或不想使用GPU,可以选择CPU版本的PyTorch。2.Python版本PyTorch

MinIO对象存储:CentOS系统下的高性能部署MinIO是一款基于Go语言开发的高性能、分布式对象存储系统,与AmazonS3兼容。它支持多种客户端语言,包括Java、Python、JavaScript和Go。本文将简要介绍MinIO在CentOS系统上的安装和兼容性。CentOS版本兼容性MinIO已在多个CentOS版本上得到验证,包括但不限于:CentOS7.9:提供完整的安装指南,涵盖集群配置、环境准备、配置文件设置、磁盘分区以及MinI

CentOS 安装 Nginx 需要遵循以下步骤:安装依赖包,如开发工具、pcre-devel 和 openssl-devel。下载 Nginx 源码包,解压后编译安装,并指定安装路径为 /usr/local/nginx。创建 Nginx 用户和用户组,并设置权限。修改配置文件 nginx.conf,配置监听端口和域名/IP 地址。启动 Nginx 服务。需要注意常见的错误,如依赖问题、端口冲突和配置文件错误。性能优化需要根据具体情况调整,如开启缓存和调整 worker 进程数量。
