python实现bitmap数据结构详解
bitmap是很常用的数据结构,比如用于Bloom Filter中;用于无重复整数的排序等等。bitmap通常基于数组来实现,数组中每个元素可以看成是一系列二进制数,所有元素组成更大的二进制集合。对于Python来说,整数类型默认是有符号类型,所以一个整数的可用位数为31位。
bitmap实现思路
bitmap是用于对每一位进行操作。举例来说,一个Python数组包含4个32位有符号整型,则总共可用位为4 * 31 = 124位。如果要在第90个二进制位上操作,则要先获取到操作数组的第几个元素,再获取相应的位索引,然后执行操作。
上图所示为一个32位整型,在Python中默认是有符号类型,最高位为符号位,bitmap不能使用它。左边是高位,右边是低位,最低位为第0位。
bitmap是用于对每一位进行操作。举例来说,一个Python数组包含4个32位有符号整型,则总共可用位为4 * 31 = 124位。如果要在第90个二进制位上操作,则要先获取到操作数组的第几个元素,再获取相应的位索引,然后执行操作。
初始化bitmap
首先需要初始化bitmap。拿90这个整数来说,因为单个整型只能使用31位,所以90除以31并向上取整则可得知需要几个数组元素。代码如下:
#!/usr/bin/env python
#coding: utf8
class Bitmap(object):
def __init__(self, max):
self.size = int((max + 31 - 1) / 31) #向上取整
if __name__ == '__main__':
bitmap = Bitmap(90)
print '需要 %d 个元素。' % bitmap.size
$ python bitmap.py
需要 3 个元素。
计算在数组中的索引
计算在数组中的索引其实是跟之前计算数组大小是一样的。只不过之前是对最大数计算,现在换成任一需要存储的整数。但是有一点不同,计算在数组中的索引是向下取整,所以需要修改calcElemIndex方法的实现。代码改为如下:
#!/usr/bin/env python
#coding: utf8
class Bitmap(object):
def __init__(self, max):
self.size = self.calcElemIndex(max, True)
self.array = [0 for i in range(self.size)]
def calcElemIndex(self, num, up=False):
'''up为True则为向上取整, 否则为向下取整'''
if up:
return int((num + 31 - 1) / 31) #向上取整
return num / 31
if __name__ == '__main__':
bitmap = Bitmap(90)
print '数组需要 %d 个元素。' % bitmap.size
print '47 应存储在第 %d 个数组元素上。' % bitmap.calcElemIndex(47)
$ python bitmap.py
数组需要 3 个元素。
47 应存储在第 1 个数组元素上。
所以获取最大整数很重要,否则有可能创建的数组容纳不下某些数据。
计算在数组元素中的位索引
数组元素中的位索引可以通过取模运算来得到。令需存储的整数跟31取模即可得到位索引。代码改为如下:
#!/usr/bin/env python
#coding: utf8
class Bitmap(object):
def __init__(self, max):
self.size = self.calcElemIndex(max, True)
self.array = [0 for i in range(self.size)]
def calcElemIndex(self, num, up=False):
'''up为True则为向上取整, 否则为向下取整'''
if up:
return int((num + 31 - 1) / 31) #向上取整
return num / 31
def calcBitIndex(self, num):
return num % 31
if __name__ == '__main__':
bitmap = Bitmap(90)
print '数组需要 %d 个元素。' % bitmap.size
print '47 应存储在第 %d 个数组元素上。' % bitmap.calcElemIndex(47)
print '47 应存储在第 %d 个数组元素的第 %d 位上。' % (bitmap.calcElemIndex(47), bitmap.calcBitIndex(47),)
别忘了是从第0位算起哦。
置1操作
二进制位默认是0,将某位置1则表示在此位存储了数据。代码改为如下:
#!/usr/bin/env python
#coding: utf8
class Bitmap(object):
def __init__(self, max):
self.size = self.calcElemIndex(max, True)
self.array = [0 for i in range(self.size)]
def calcElemIndex(self, num, up=False):
'''up为True则为向上取整, 否则为向下取整'''
if up:
return int((num + 31 - 1) / 31) #向上取整
return num / 31
def calcBitIndex(self, num):
return num % 31
def set(self, num):
elemIndex = self.calcElemIndex(num)
byteIndex = self.calcBitIndex(num)
elem = self.array[elemIndex]
self.array[elemIndex] = elem | (1
if __name__ == '__main__':
bitmap = Bitmap(90)
bitmap.set(0)
print bitmap.array
因为从第0位算起,所以如需要存储0,则需要把第0位置1。
清0操作
将某位置0,也即丢弃已存储的数据。代码如下:
#!/usr/bin/env python
#coding: utf8
class Bitmap(object):
def __init__(self, max):
self.size = self.calcElemIndex(max, True)
self.array = [0 for i in range(self.size)]
def calcElemIndex(self, num, up=False):
'''up为True则为向上取整, 否则为向下取整'''
if up:
return int((num + 31 - 1) / 31) #向上取整
return num / 31
def calcBitIndex(self, num):
return num % 31
def set(self, num):
elemIndex = self.calcElemIndex(num)
byteIndex = self.calcBitIndex(num)
elem = self.array[elemIndex]
self.array[elemIndex] = elem | (1
def clean(self, i):
elemIndex = self.calcElemIndex(i)
byteIndex = self.calcBitIndex(i)
elem = self.array[elemIndex]
self.array[elemIndex] = elem & (~(1
if __name__ == '__main__':
bitmap = Bitmap(87)
bitmap.set(0)
bitmap.set(34)
print bitmap.array
bitmap.clean(0)
print bitmap.array
bitmap.clean(34)
print bitmap.array
清0和置1是互反操作。
测试某位是否为1
判断某位是否为1是为了取出之前所存储的数据。代码如下:
#!/usr/bin/env python
#coding: utf8
class Bitmap(object):
def __init__(self, max):
self.size = self.calcElemIndex(max, True)
self.array = [0 for i in range(self.size)]
def calcElemIndex(self, num, up=False):
'''up为True则为向上取整, 否则为向下取整'''
if up:
return int((num + 31 - 1) / 31) #向上取整
return num / 31
def calcBitIndex(self, num):
return num % 31
def set(self, num):
elemIndex = self.calcElemIndex(num)
byteIndex = self.calcBitIndex(num)
elem = self.array[elemIndex]
self.array[elemIndex] = elem | (1
def clean(self, i):
elemIndex = self.calcElemIndex(i)
byteIndex = self.calcBitIndex(i)
elem = self.array[elemIndex]
self.array[elemIndex] = elem & (~(1
def test(self, i):
elemIndex = self.calcElemIndex(i)
byteIndex = self.calcBitIndex(i)
if self.array[elemIndex] & (1 return True
return False
if __name__ == '__main__':
bitmap = Bitmap(90)
bitmap.set(0)
print bitmap.array
print bitmap.test(0)
bitmap.set(1)
print bitmap.test(1)
print bitmap.test(2)
bitmap.clean(1)
print bitmap.test(1)
$ python bitmap.py
[1, 0, 0]
True
True
False
False
接下来实现一个不重复数组的排序。已知一个无序非负整数数组的最大元素为879,请对其自然排序。代码如下:
#!/usr/bin/env python
#coding: utf8
class Bitmap(object):
def __init__(self, max):
self.size = self.calcElemIndex(max, True)
self.array = [0 for i in range(self.size)]
def calcElemIndex(self, num, up=False):
'''up为True则为向上取整, 否则为向下取整'''
if up:
return int((num + 31 - 1) / 31) #向上取整
return num / 31
def calcBitIndex(self, num):
return num % 31
def set(self, num):
elemIndex = self.calcElemIndex(num)
byteIndex = self.calcBitIndex(num)
elem = self.array[elemIndex]
self.array[elemIndex] = elem | (1
def clean(self, i):
elemIndex = self.calcElemIndex(i)
byteIndex = self.calcBitIndex(i)
elem = self.array[elemIndex]
self.array[elemIndex] = elem & (~(1
def test(self, i):
elemIndex = self.calcElemIndex(i)
byteIndex = self.calcBitIndex(i)
if self.array[elemIndex] & (1 return True
return False
if __name__ == '__main__':
MAX = 879
suffle_array = [45, 2, 78, 35, 67, 90, 879, 0, 340, 123, 46]
result = []
bitmap = Bitmap(MAX)
for num in suffle_array:
bitmap.set(num)
for i in range(MAX + 1):
if bitmap.test(i):
result.append(i)
print '原始数组为: %s' % suffle_array
print '排序后的数组为: %s' % result
bitmap实现了,则利用其进行排序就非常简单了。其它语言也同样可以实现bitmap,但对于静态类型语言来说,比如C/Golang这样的语言,因为可以直接声明无符号整型,所以可用位就变成32位,只需将上述代码中的31改成32即可,这点请大家注意。

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

Java中比较复杂数据结构时,使用Comparator提供灵活的比较机制。具体步骤包括:定义比较器类,重写compare方法定义比较逻辑。创建比较器实例。使用Collections.sort方法,传入集合和比较器实例。

数据结构和算法是Java开发的基础,本文深入探讨Java中的关键数据结构(如数组、链表、树等)和算法(如排序、搜索、图算法等)。这些结构通过实战案例进行说明,包括使用数组存储分数、使用链表管理购物清单、使用栈实现递归、使用队列同步线程以及使用树和哈希表进行快速搜索和身份验证等。理解这些概念可以编写高效且可维护的Java代码。

引用类型在Go语言中是一种特殊的数据类型,它们的值并非直接存储数据本身,而是存储数据的地址。在Go语言中,引用类型包括slices、maps、channels和指针。深入了解引用类型对于理解Go语言的内存管理和数据传递方式至关重要。本文将结合具体的代码示例,介绍Go语言中引用类型的特点和使用方法。1.切片(Slices)切片是Go语言中最常用的引用类型之一

AVL树是一种平衡二叉搜索树,确保快速高效的数据操作。为了实现平衡,它执行左旋和右旋操作,调整违反平衡的子树。AVL树利用高度平衡,确保树的高度相对于节点数始终较小,从而实现对数时间复杂度(O(logn))的查找操作,即使在大型数据集上也能保持数据结构的效率。

Java集合框架概述Java集合框架是Java编程语言的重要组成部分,它提供了一系列可以存储和管理数据的容器类库。这些容器类库具有不同的数据结构,可以满足不同场景下的数据存储和处理需求。集合框架的优势在于它提供了统一的接口,使得开发人员可以使用相同的方式来操作不同的容器类库,从而降低了开发难度。Java集合框架的数据结构Java集合框架中包含多种数据结构,每种数据结构都有其独特的特性和适用场景。下面是几种常见的Java集合框架数据结构:1.List:List是一个有序的集合,它允许元素重复。Li

PHPSPL数据结构库概述PHPSPL(标准php库)数据结构库包含一组类和接口,用于存储和操作各种数据结构。这些数据结构包括数组、链表、栈、队列和集合,每个数据结构都提供了一组特定的方法和属性,用于操纵数据。数组在PHP中,数组是存储一系列元素的有序集合。SPL数组类提供了对原生的PHP数组进行加强的功能,包括排序、过滤和映射。以下是使用SPL数组类的一个示例:useSplArrayObject;$array=newArrayObject(["foo","bar","baz"]);$array

利用哈希表可优化PHP数组交集和并集计算,将时间复杂度从O(n*m)降低到O(n+m),具体步骤如下:使用哈希表将第一个数组的元素映射到布尔值,以快速查找第二个数组中元素是否存在,提高交集计算效率。使用哈希表将第一个数组的元素标记为存在,然后逐个添加第二个数组的元素,忽略已存在的元素,提高并集计算效率。

深入学习Go语言数据结构的奥秘,需要具体代码示例Go语言作为一门简洁、高效的编程语言,在处理数据结构方面也展现出了其独特的魅力。数据结构是计算机科学中的基础概念,它旨在组织和管理数据,使得数据能够更有效地被访问和操作。通过深入学习Go语言数据结构的奥秘,我们可以更好地理解数据的存储方式和操作方法,从而提高编程效率和代码质量。一、数组数组是最简单的数据结构之一
